Properties

Label 1-399-399.59-r1-0-0
Degree 11
Conductor 399399
Sign 0.2430.970i-0.243 - 0.970i
Analytic cond. 42.878542.8785
Root an. cond. 42.878542.8785
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (0.173 + 0.984i)5-s + (−0.5 − 0.866i)8-s + (0.766 + 0.642i)10-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)13-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)17-s + 20-s + (−0.173 − 0.984i)22-s + (0.939 − 0.342i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + (−0.939 + 0.342i)29-s + ⋯
L(s)  = 1  + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (0.173 + 0.984i)5-s + (−0.5 − 0.866i)8-s + (0.766 + 0.642i)10-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)13-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)17-s + 20-s + (−0.173 − 0.984i)22-s + (0.939 − 0.342i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + (−0.939 + 0.342i)29-s + ⋯

Functional equation

Λ(s)=(399s/2ΓR(s+1)L(s)=((0.2430.970i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.243 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(399s/2ΓR(s+1)L(s)=((0.2430.970i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.243 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 399399    =    37193 \cdot 7 \cdot 19
Sign: 0.2430.970i-0.243 - 0.970i
Analytic conductor: 42.878542.8785
Root analytic conductor: 42.878542.8785
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ399(59,)\chi_{399} (59, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 399, (1: ), 0.2430.970i)(1,\ 399,\ (1:\ ),\ -0.243 - 0.970i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8970839692.431003502i1.897083969 - 2.431003502i
L(12)L(\frac12) \approx 1.8970839692.431003502i1.897083969 - 2.431003502i
L(1)L(1) \approx 1.5237717680.7623433813i1.523771768 - 0.7623433813i
L(1)L(1) \approx 1.5237717680.7623433813i1.523771768 - 0.7623433813i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
5 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
11 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
13 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
17 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
23 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
29 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
31 1+T 1 + T
37 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
41 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
43 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
47 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
53 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
59 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
61 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
67 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
71 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
73 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
79 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
83 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
89 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
97 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.483323484206518221554707220320, −23.55800282062283644044265609924, −22.86732739311919317032264888149, −21.91078113727774383475224398637, −20.90992369271579633988758409935, −20.51888837618255052212519163939, −19.32093503824038086305914149812, −18.00078769221188442121111692504, −17.080392996730397112039702590437, −16.523811810266133349789037455903, −15.61020650307502643702110224816, −14.68404094139928320795900677374, −13.72195041943808274681363434444, −13.023521340957214902288773787567, −12.03593861800740249235364535662, −11.43581287289433006653224616369, −9.603353553407017351742405004064, −8.978089689672732559683488878657, −7.79416530889055543237399059160, −6.88483546464292399774312392835, −5.851352382107150107867272812834, −4.73468314071697428025628908411, −4.2264162052675079701789187806, −2.716785432608466913516503172344, −1.32914830768348015437254836934, 0.6768337846858851872849963486, 2.091129705390256824631621715035, 3.2076485881996041504086179373, 3.85453822580741799813794570058, 5.409622930963156037611426732542, 6.12703117486389830469345511472, 7.10395644031210534093585764263, 8.52095425432212813081457025606, 9.77204238578841687598981185910, 10.73422059743056903853802659609, 11.15569471632545097221834810923, 12.363121381031987326708291395852, 13.25519957898194290095700625257, 14.12555630955056254833764701957, 14.88814434067470300438822327657, 15.59192976069930230131732887, 16.94220448629933485968710200602, 18.03767769590822718894516314974, 18.98583736256996458368846652097, 19.47165463060949527895060469391, 20.62921379006470391141749360406, 21.44983618941702005693111444274, 22.23508842321731306760680555771, 22.79409698250779078948194970715, 23.71527180853680704806838223344

Graph of the ZZ-function along the critical line