L(s) = 1 | + (0.957 + 0.286i)2-s + (0.835 + 0.549i)4-s + (−0.998 + 0.0581i)7-s + (0.642 + 0.766i)8-s + (0.597 − 0.802i)11-s + (−0.727 − 0.686i)13-s + (−0.973 − 0.230i)14-s + (0.396 + 0.918i)16-s + (−0.984 − 0.173i)17-s + (−0.173 − 0.984i)19-s + (0.802 − 0.597i)22-s + (−0.998 − 0.0581i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (−0.973 + 0.230i)29-s + ⋯ |
L(s) = 1 | + (0.957 + 0.286i)2-s + (0.835 + 0.549i)4-s + (−0.998 + 0.0581i)7-s + (0.642 + 0.766i)8-s + (0.597 − 0.802i)11-s + (−0.727 − 0.686i)13-s + (−0.973 − 0.230i)14-s + (0.396 + 0.918i)16-s + (−0.984 − 0.173i)17-s + (−0.173 − 0.984i)19-s + (0.802 − 0.597i)22-s + (−0.998 − 0.0581i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (−0.973 + 0.230i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.222 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.222 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9656821711 - 1.210308263i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9656821711 - 1.210308263i\) |
\(L(1)\) |
\(\approx\) |
\(1.418184708 + 0.007523746248i\) |
\(L(1)\) |
\(\approx\) |
\(1.418184708 + 0.007523746248i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.957 + 0.286i)T \) |
| 7 | \( 1 + (-0.998 + 0.0581i)T \) |
| 11 | \( 1 + (0.597 - 0.802i)T \) |
| 13 | \( 1 + (-0.727 - 0.686i)T \) |
| 17 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.173 - 0.984i)T \) |
| 23 | \( 1 + (-0.998 - 0.0581i)T \) |
| 29 | \( 1 + (-0.973 + 0.230i)T \) |
| 31 | \( 1 + (0.893 - 0.448i)T \) |
| 37 | \( 1 + (0.342 + 0.939i)T \) |
| 41 | \( 1 + (-0.286 - 0.957i)T \) |
| 43 | \( 1 + (0.116 - 0.993i)T \) |
| 47 | \( 1 + (0.448 - 0.893i)T \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.597 - 0.802i)T \) |
| 61 | \( 1 + (-0.835 + 0.549i)T \) |
| 67 | \( 1 + (0.230 - 0.973i)T \) |
| 71 | \( 1 + (0.766 + 0.642i)T \) |
| 73 | \( 1 + (0.642 + 0.766i)T \) |
| 79 | \( 1 + (0.286 - 0.957i)T \) |
| 83 | \( 1 + (-0.957 - 0.286i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.918 - 0.396i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.32110174907477252186368218964, −23.27890113748222628864982367309, −22.567595394888370130525605936159, −21.98739626971802519756602870179, −21.03273963483410631590347912373, −19.89554817021561570021940406530, −19.60701439985498717179295887709, −18.50560993692448719543794355656, −17.14649595945506848535544495345, −16.30964913784023454208180958652, −15.42603055220749291930757023417, −14.53665047186236701061373151077, −13.7388502981584190755203649861, −12.65904458416650171115749637352, −12.18332361921971447000099124388, −11.10808334208228562506081712708, −9.956311352843453655375965061811, −9.37174670914552085492935743209, −7.64366463382911942462294320770, −6.63028281148976580220256127885, −6.00734827830228014326217694557, −4.54834789903756526218785685672, −3.91160583170365605871425175699, −2.62773846313718282800081919238, −1.61972893567548311181315410041,
0.26803134965195317735241378667, 2.25724986951486034495013151419, 3.21140615691019477511877112872, 4.18304520575271209980967186548, 5.36406121493060922180004629337, 6.32942767291516554393919933140, 7.026909602322748695828672133480, 8.24893852058615705051581812323, 9.36168882025363766572605983787, 10.56625927410678926566983117963, 11.567482413212207684105528257429, 12.437695616748073990935418443365, 13.337558632760974708881411395076, 13.940383732003143810966888917160, 15.206117760673852883894845956324, 15.69612780714883674883384106515, 16.74687040601027374339011852347, 17.40546667124355320975916093291, 18.83243300277132471257771963935, 19.84145984118266695784723045048, 20.30020969836564671616221117, 21.77148455049540030685159326972, 22.14665773529545907154933594105, 22.79532870520046360526632169964, 24.06048267001176077941334795427