L(s) = 1 | + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)7-s + (−0.965 + 0.258i)9-s + (0.793 + 0.608i)11-s + (0.866 + 0.5i)17-s + (0.608 + 0.793i)19-s + (0.923 − 0.382i)21-s + (0.258 − 0.965i)23-s + (−0.382 − 0.923i)27-s + (0.130 + 0.991i)29-s − 31-s + (−0.5 + 0.866i)33-s + (−0.608 + 0.793i)37-s + (−0.258 + 0.965i)41-s + (0.130 − 0.991i)43-s + ⋯ |
L(s) = 1 | + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)7-s + (−0.965 + 0.258i)9-s + (0.793 + 0.608i)11-s + (0.866 + 0.5i)17-s + (0.608 + 0.793i)19-s + (0.923 − 0.382i)21-s + (0.258 − 0.965i)23-s + (−0.382 − 0.923i)27-s + (0.130 + 0.991i)29-s − 31-s + (−0.5 + 0.866i)33-s + (−0.608 + 0.793i)37-s + (−0.258 + 0.965i)41-s + (0.130 − 0.991i)43-s + ⋯ |
Λ(s)=(=(4160s/2ΓR(s)L(s)(−0.156+0.987i)Λ(1−s)
Λ(s)=(=(4160s/2ΓR(s)L(s)(−0.156+0.987i)Λ(1−s)
Degree: |
1 |
Conductor: |
4160
= 26⋅5⋅13
|
Sign: |
−0.156+0.987i
|
Analytic conductor: |
19.3189 |
Root analytic conductor: |
19.3189 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4160(1309,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 4160, (0: ), −0.156+0.987i)
|
Particular Values
L(21) |
≈ |
1.088532784+1.274679964i |
L(21) |
≈ |
1.088532784+1.274679964i |
L(1) |
≈ |
1.042884870+0.3939303784i |
L(1) |
≈ |
1.042884870+0.3939303784i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+(0.130+0.991i)T |
| 7 | 1+(−0.258−0.965i)T |
| 11 | 1+(0.793+0.608i)T |
| 17 | 1+(0.866+0.5i)T |
| 19 | 1+(0.608+0.793i)T |
| 23 | 1+(0.258−0.965i)T |
| 29 | 1+(0.130+0.991i)T |
| 31 | 1−T |
| 37 | 1+(−0.608+0.793i)T |
| 41 | 1+(−0.258+0.965i)T |
| 43 | 1+(0.130−0.991i)T |
| 47 | 1−iT |
| 53 | 1+(0.923−0.382i)T |
| 59 | 1+(0.991+0.130i)T |
| 61 | 1+(−0.793+0.608i)T |
| 67 | 1+(0.130+0.991i)T |
| 71 | 1+(0.258+0.965i)T |
| 73 | 1+(−0.707−0.707i)T |
| 79 | 1−iT |
| 83 | 1+(−0.382+0.923i)T |
| 89 | 1+(0.965+0.258i)T |
| 97 | 1+(−0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.37868264460628191952272538643, −17.598497292227095526521707604446, −17.04643976595992302385645347977, −16.158363936691508582472598784720, −15.54407092414557225822895293244, −14.66487633427143479626887628387, −14.09151803153940394828767591708, −13.46443187527037751621096555040, −12.74046009445486350796537594440, −12.02020459555599496197946452308, −11.605247452552408727247969310373, −10.94545088934014269655259513798, −9.61783807338565237719812531117, −9.182752940469619014259345269624, −8.562013932197875593147986293414, −7.64178056975743002036114365814, −7.144610097005850262129367946810, −6.20779644399144726618888186086, −5.72036815534438936506172431659, −5.03235503461998334681178974030, −3.65301561398630459478940717724, −3.094733002883801923496883483896, −2.28988721187889294714811253532, −1.441138468253540276666479773934, −0.53513083821139811994291270920,
0.970606566304107172212808765869, 1.893388123534508874285964598219, 3.14443781443854868563794364099, 3.65714389184963793200009395663, 4.272243415234016053548509238905, 5.07953364296445219714292177536, 5.81954533352078099117363828287, 6.78732924497496883441057433802, 7.37779318416025539306417148230, 8.359296218892889961213149015602, 8.93571888663188678423481605961, 9.94213122279570987523931833983, 10.13087946775405581945635075669, 10.83925164100991446606376018106, 11.74727697923062015535705195324, 12.34045946878411598084139291365, 13.24853864517920886461283610327, 14.055307590000145729400346980602, 14.64418662342616608321676209391, 14.986062370364604242468463403280, 16.11301475274415022502349734981, 16.58986214466037776908129123112, 16.94299457303627081579467550359, 17.76058465449756409619061307533, 18.63375049601856548002886961073