Properties

Label 1-4160-4160.1309-r0-0-0
Degree 11
Conductor 41604160
Sign 0.156+0.987i-0.156 + 0.987i
Analytic cond. 19.318919.3189
Root an. cond. 19.318919.3189
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)7-s + (−0.965 + 0.258i)9-s + (0.793 + 0.608i)11-s + (0.866 + 0.5i)17-s + (0.608 + 0.793i)19-s + (0.923 − 0.382i)21-s + (0.258 − 0.965i)23-s + (−0.382 − 0.923i)27-s + (0.130 + 0.991i)29-s − 31-s + (−0.5 + 0.866i)33-s + (−0.608 + 0.793i)37-s + (−0.258 + 0.965i)41-s + (0.130 − 0.991i)43-s + ⋯
L(s)  = 1  + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)7-s + (−0.965 + 0.258i)9-s + (0.793 + 0.608i)11-s + (0.866 + 0.5i)17-s + (0.608 + 0.793i)19-s + (0.923 − 0.382i)21-s + (0.258 − 0.965i)23-s + (−0.382 − 0.923i)27-s + (0.130 + 0.991i)29-s − 31-s + (−0.5 + 0.866i)33-s + (−0.608 + 0.793i)37-s + (−0.258 + 0.965i)41-s + (0.130 − 0.991i)43-s + ⋯

Functional equation

Λ(s)=(4160s/2ΓR(s)L(s)=((0.156+0.987i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(4160s/2ΓR(s)L(s)=((0.156+0.987i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 41604160    =    265132^{6} \cdot 5 \cdot 13
Sign: 0.156+0.987i-0.156 + 0.987i
Analytic conductor: 19.318919.3189
Root analytic conductor: 19.318919.3189
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ4160(1309,)\chi_{4160} (1309, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 4160, (0: ), 0.156+0.987i)(1,\ 4160,\ (0:\ ),\ -0.156 + 0.987i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.088532784+1.274679964i1.088532784 + 1.274679964i
L(12)L(\frac12) \approx 1.088532784+1.274679964i1.088532784 + 1.274679964i
L(1)L(1) \approx 1.042884870+0.3939303784i1.042884870 + 0.3939303784i
L(1)L(1) \approx 1.042884870+0.3939303784i1.042884870 + 0.3939303784i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
7 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
11 1+(0.793+0.608i)T 1 + (0.793 + 0.608i)T
17 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
19 1+(0.608+0.793i)T 1 + (0.608 + 0.793i)T
23 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
29 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
31 1T 1 - T
37 1+(0.608+0.793i)T 1 + (-0.608 + 0.793i)T
41 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
43 1+(0.1300.991i)T 1 + (0.130 - 0.991i)T
47 1iT 1 - iT
53 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
59 1+(0.991+0.130i)T 1 + (0.991 + 0.130i)T
61 1+(0.793+0.608i)T 1 + (-0.793 + 0.608i)T
67 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
71 1+(0.258+0.965i)T 1 + (0.258 + 0.965i)T
73 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
79 1iT 1 - iT
83 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
89 1+(0.965+0.258i)T 1 + (0.965 + 0.258i)T
97 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.37868264460628191952272538643, −17.598497292227095526521707604446, −17.04643976595992302385645347977, −16.158363936691508582472598784720, −15.54407092414557225822895293244, −14.66487633427143479626887628387, −14.09151803153940394828767591708, −13.46443187527037751621096555040, −12.74046009445486350796537594440, −12.02020459555599496197946452308, −11.605247452552408727247969310373, −10.94545088934014269655259513798, −9.61783807338565237719812531117, −9.182752940469619014259345269624, −8.562013932197875593147986293414, −7.64178056975743002036114365814, −7.144610097005850262129367946810, −6.20779644399144726618888186086, −5.72036815534438936506172431659, −5.03235503461998334681178974030, −3.65301561398630459478940717724, −3.094733002883801923496883483896, −2.28988721187889294714811253532, −1.441138468253540276666479773934, −0.53513083821139811994291270920, 0.970606566304107172212808765869, 1.893388123534508874285964598219, 3.14443781443854868563794364099, 3.65714389184963793200009395663, 4.272243415234016053548509238905, 5.07953364296445219714292177536, 5.81954533352078099117363828287, 6.78732924497496883441057433802, 7.37779318416025539306417148230, 8.359296218892889961213149015602, 8.93571888663188678423481605961, 9.94213122279570987523931833983, 10.13087946775405581945635075669, 10.83925164100991446606376018106, 11.74727697923062015535705195324, 12.34045946878411598084139291365, 13.24853864517920886461283610327, 14.055307590000145729400346980602, 14.64418662342616608321676209391, 14.986062370364604242468463403280, 16.11301475274415022502349734981, 16.58986214466037776908129123112, 16.94299457303627081579467550359, 17.76058465449756409619061307533, 18.63375049601856548002886961073

Graph of the ZZ-function along the critical line