Dirichlet series
L(s) = 1 | + (0.989 − 0.145i)2-s + (−0.322 − 0.946i)3-s + (0.957 − 0.288i)4-s + (0.252 + 0.967i)5-s + (−0.457 − 0.889i)6-s + (0.791 − 0.611i)7-s + (0.905 − 0.424i)8-s + (−0.791 + 0.611i)9-s + (0.391 + 0.920i)10-s + (−0.0365 + 0.999i)11-s + (−0.581 − 0.813i)12-s + (−0.989 − 0.145i)13-s + (0.694 − 0.719i)14-s + (0.833 − 0.551i)15-s + (0.833 − 0.551i)16-s + (0.0365 − 0.999i)17-s + ⋯ |
L(s) = 1 | + (0.989 − 0.145i)2-s + (−0.322 − 0.946i)3-s + (0.957 − 0.288i)4-s + (0.252 + 0.967i)5-s + (−0.457 − 0.889i)6-s + (0.791 − 0.611i)7-s + (0.905 − 0.424i)8-s + (−0.791 + 0.611i)9-s + (0.391 + 0.920i)10-s + (−0.0365 + 0.999i)11-s + (−0.581 − 0.813i)12-s + (−0.989 − 0.145i)13-s + (0.694 − 0.719i)14-s + (0.833 − 0.551i)15-s + (0.833 − 0.551i)16-s + (0.0365 − 0.999i)17-s + ⋯ |
Functional equation
Invariants
Degree: | \(1\) |
Conductor: | \(431\) |
Sign: | $0.244 - 0.969i$ |
Analytic conductor: | \(46.3173\) |
Root analytic conductor: | \(46.3173\) |
Motivic weight: | \(0\) |
Rational: | no |
Arithmetic: | yes |
Character: | $\chi_{431} (282, \cdot )$ |
Primitive: | yes |
Self-dual: | no |
Analytic rank: | \(0\) |
Selberg data: | \((1,\ 431,\ (1:\ ),\ 0.244 - 0.969i)\) |
Particular Values
\(L(\frac{1}{2})\) | \(\approx\) | \(3.177393410 - 2.475676824i\) |
\(L(\frac12)\) | \(\approx\) | \(3.177393410 - 2.475676824i\) |
\(L(1)\) | \(\approx\) | \(1.912028572 - 0.7348958482i\) |
\(L(1)\) | \(\approx\) | \(1.912028572 - 0.7348958482i\) |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 431 | \( 1 \) |
good | 2 | \( 1 + (0.989 - 0.145i)T \) |
3 | \( 1 + (-0.322 - 0.946i)T \) | |
5 | \( 1 + (0.252 + 0.967i)T \) | |
7 | \( 1 + (0.791 - 0.611i)T \) | |
11 | \( 1 + (-0.0365 + 0.999i)T \) | |
13 | \( 1 + (-0.989 - 0.145i)T \) | |
17 | \( 1 + (0.0365 - 0.999i)T \) | |
19 | \( 1 + (0.252 - 0.967i)T \) | |
23 | \( 1 + (0.744 - 0.667i)T \) | |
29 | \( 1 + (0.957 + 0.288i)T \) | |
31 | \( 1 + (0.457 - 0.889i)T \) | |
37 | \( 1 + (0.694 - 0.719i)T \) | |
41 | \( 1 + (0.833 - 0.551i)T \) | |
43 | \( 1 + (-0.391 + 0.920i)T \) | |
47 | \( 1 + (0.976 + 0.217i)T \) | |
53 | \( 1 + (-0.976 + 0.217i)T \) | |
59 | \( 1 + (0.989 - 0.145i)T \) | |
61 | \( 1 + (-0.934 - 0.357i)T \) | |
67 | \( 1 + (0.694 - 0.719i)T \) | |
71 | \( 1 + (0.976 + 0.217i)T \) | |
73 | \( 1 + (0.181 + 0.983i)T \) | |
79 | \( 1 + (-0.639 - 0.768i)T \) | |
83 | \( 1 + (0.322 + 0.946i)T \) | |
89 | \( 1 + (-0.520 - 0.853i)T \) | |
97 | \( 1 + (0.639 - 0.768i)T \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−23.984179876026464142498646031412, −23.336466746251627826503242100483, −22.08692544053333041006607865403, −21.46657658619519435567890281302, −21.15306958760064604600350414762, −20.184473225225114571566670574389, −19.22448588386620451552444889635, −17.53180735341430444772910855241, −16.937582735287907126165854280096, −16.1658158994533665898346420713, −15.32424122677249711209522332445, −14.528109875989246159703606476829, −13.71289420231345776371833532007, −12.42672016964083011886982145877, −11.889863867931706053249976906376, −10.96232402277224108423770585670, −9.92481045100883320892845999464, −8.695685370493932086938581208247, −7.97732107006927435630616627256, −6.24116801197626357428616062428, −5.455682684545610825375443126203, −4.87213015471425529201828336513, −3.92475131269674205612057196088, −2.71083513142933326884895113427, −1.287633497631727851931375205213, 0.84817129631007669367416926581, 2.25570947331314886008943784710, 2.76039474204112951943918722572, 4.50243108291000789892938443928, 5.21283864579809695734406943878, 6.51936156395605575756503694340, 7.20719507767873875072203515997, 7.6956972898117976373039324667, 9.70356126349998188313698711846, 10.79600035030334887303293990393, 11.39270391596863464921677857236, 12.300588448205183317495610642168, 13.19546210529822956013958634006, 14.15106778369077420445271687461, 14.54298370101945026854974454133, 15.58507581066875149125478259536, 17.01096847335201620823815114240, 17.65827384224092838693994955331, 18.53354007093143815528067065315, 19.62147015169093177046122251209, 20.252363673007366549681650694450, 21.31429066894113110932394178876, 22.35180572027238338886559790624, 22.86805452583424264209674664570, 23.55866741510626498775875917131