L(s) = 1 | + (0.989 − 0.145i)2-s + (−0.322 − 0.946i)3-s + (0.957 − 0.288i)4-s + (0.252 + 0.967i)5-s + (−0.457 − 0.889i)6-s + (0.791 − 0.611i)7-s + (0.905 − 0.424i)8-s + (−0.791 + 0.611i)9-s + (0.391 + 0.920i)10-s + (−0.0365 + 0.999i)11-s + (−0.581 − 0.813i)12-s + (−0.989 − 0.145i)13-s + (0.694 − 0.719i)14-s + (0.833 − 0.551i)15-s + (0.833 − 0.551i)16-s + (0.0365 − 0.999i)17-s + ⋯ |
L(s) = 1 | + (0.989 − 0.145i)2-s + (−0.322 − 0.946i)3-s + (0.957 − 0.288i)4-s + (0.252 + 0.967i)5-s + (−0.457 − 0.889i)6-s + (0.791 − 0.611i)7-s + (0.905 − 0.424i)8-s + (−0.791 + 0.611i)9-s + (0.391 + 0.920i)10-s + (−0.0365 + 0.999i)11-s + (−0.581 − 0.813i)12-s + (−0.989 − 0.145i)13-s + (0.694 − 0.719i)14-s + (0.833 − 0.551i)15-s + (0.833 − 0.551i)16-s + (0.0365 − 0.999i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓR(s+1)L(s)(0.244−0.969i)Λ(1−s)
Λ(s)=(=(431s/2ΓR(s+1)L(s)(0.244−0.969i)Λ(1−s)
Degree: |
1 |
Conductor: |
431
|
Sign: |
0.244−0.969i
|
Analytic conductor: |
46.3173 |
Root analytic conductor: |
46.3173 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(282,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 431, (1: ), 0.244−0.969i)
|
Particular Values
L(21) |
≈ |
3.177393410−2.475676824i |
L(21) |
≈ |
3.177393410−2.475676824i |
L(1) |
≈ |
1.912028572−0.7348958482i |
L(1) |
≈ |
1.912028572−0.7348958482i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1 |
good | 2 | 1+(0.989−0.145i)T |
| 3 | 1+(−0.322−0.946i)T |
| 5 | 1+(0.252+0.967i)T |
| 7 | 1+(0.791−0.611i)T |
| 11 | 1+(−0.0365+0.999i)T |
| 13 | 1+(−0.989−0.145i)T |
| 17 | 1+(0.0365−0.999i)T |
| 19 | 1+(0.252−0.967i)T |
| 23 | 1+(0.744−0.667i)T |
| 29 | 1+(0.957+0.288i)T |
| 31 | 1+(0.457−0.889i)T |
| 37 | 1+(0.694−0.719i)T |
| 41 | 1+(0.833−0.551i)T |
| 43 | 1+(−0.391+0.920i)T |
| 47 | 1+(0.976+0.217i)T |
| 53 | 1+(−0.976+0.217i)T |
| 59 | 1+(0.989−0.145i)T |
| 61 | 1+(−0.934−0.357i)T |
| 67 | 1+(0.694−0.719i)T |
| 71 | 1+(0.976+0.217i)T |
| 73 | 1+(0.181+0.983i)T |
| 79 | 1+(−0.639−0.768i)T |
| 83 | 1+(0.322+0.946i)T |
| 89 | 1+(−0.520−0.853i)T |
| 97 | 1+(0.639−0.768i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.984179876026464142498646031412, −23.336466746251627826503242100483, −22.08692544053333041006607865403, −21.46657658619519435567890281302, −21.15306958760064604600350414762, −20.184473225225114571566670574389, −19.22448588386620451552444889635, −17.53180735341430444772910855241, −16.937582735287907126165854280096, −16.1658158994533665898346420713, −15.32424122677249711209522332445, −14.528109875989246159703606476829, −13.71289420231345776371833532007, −12.42672016964083011886982145877, −11.889863867931706053249976906376, −10.96232402277224108423770585670, −9.92481045100883320892845999464, −8.695685370493932086938581208247, −7.97732107006927435630616627256, −6.24116801197626357428616062428, −5.455682684545610825375443126203, −4.87213015471425529201828336513, −3.92475131269674205612057196088, −2.71083513142933326884895113427, −1.287633497631727851931375205213,
0.84817129631007669367416926581, 2.25570947331314886008943784710, 2.76039474204112951943918722572, 4.50243108291000789892938443928, 5.21283864579809695734406943878, 6.51936156395605575756503694340, 7.20719507767873875072203515997, 7.6956972898117976373039324667, 9.70356126349998188313698711846, 10.79600035030334887303293990393, 11.39270391596863464921677857236, 12.300588448205183317495610642168, 13.19546210529822956013958634006, 14.15106778369077420445271687461, 14.54298370101945026854974454133, 15.58507581066875149125478259536, 17.01096847335201620823815114240, 17.65827384224092838693994955331, 18.53354007093143815528067065315, 19.62147015169093177046122251209, 20.252363673007366549681650694450, 21.31429066894113110932394178876, 22.35180572027238338886559790624, 22.86805452583424264209674664570, 23.55866741510626498775875917131