Properties

Label 1-4400-4400.131-r0-0-0
Degree 11
Conductor 44004400
Sign 0.990+0.140i0.990 + 0.140i
Analytic cond. 20.433520.4335
Root an. cond. 20.433520.4335
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.951 − 0.309i)3-s − 7-s + (0.809 + 0.587i)9-s + (−0.587 + 0.809i)13-s + (−0.309 − 0.951i)17-s + (−0.951 + 0.309i)19-s + (0.951 + 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (−0.309 − 0.951i)31-s + (−0.587 + 0.809i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s i·43-s + ⋯
L(s)  = 1  + (−0.951 − 0.309i)3-s − 7-s + (0.809 + 0.587i)9-s + (−0.587 + 0.809i)13-s + (−0.309 − 0.951i)17-s + (−0.951 + 0.309i)19-s + (0.951 + 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (−0.309 − 0.951i)31-s + (−0.587 + 0.809i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s i·43-s + ⋯

Functional equation

Λ(s)=(4400s/2ΓR(s)L(s)=((0.990+0.140i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(4400s/2ΓR(s)L(s)=((0.990+0.140i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 44004400    =    2452112^{4} \cdot 5^{2} \cdot 11
Sign: 0.990+0.140i0.990 + 0.140i
Analytic conductor: 20.433520.4335
Root analytic conductor: 20.433520.4335
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ4400(131,)\chi_{4400} (131, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 4400, (0: ), 0.990+0.140i)(1,\ 4400,\ (0:\ ),\ 0.990 + 0.140i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3920915950+0.02776157387i0.3920915950 + 0.02776157387i
L(12)L(\frac12) \approx 0.3920915950+0.02776157387i0.3920915950 + 0.02776157387i
L(1)L(1) \approx 0.53772961940.03917557612i0.5377296194 - 0.03917557612i
L(1)L(1) \approx 0.53772961940.03917557612i0.5377296194 - 0.03917557612i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
11 1 1
good3 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
7 1T 1 - T
13 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
17 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
19 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
23 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
29 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
31 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
37 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
41 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
43 1iT 1 - iT
47 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
53 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
59 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
61 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
67 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
71 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
73 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
79 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
83 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
89 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
97 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.20012871251016780207506868974, −17.44433041660767593708795773307, −16.996209449865126201004239141560, −16.26732802959076770590628740949, −15.73834439601073372515820088712, −15.02644259405022580941917426914, −14.4428212146136480348924665270, −13.15402746439517321549819014114, −12.81055328308936898087140478890, −12.312009642701794932877201663463, −11.433058170274662396040498029487, −10.566702819539977475974443267508, −10.29690269334647147665407837161, −9.52419778305527882322420085799, −8.73969179725757250233415911906, −7.870996880262008958433249711048, −6.835002458707671021972504234995, −6.49477039327569362323569288747, −5.66800116946514276425609862467, −5.06352045348682826228194963445, −4.093795988423035501938203763, −3.5599013034950681146381107340, −2.53545788719077861008714280553, −1.55335392740191637995372529392, −0.29688652814926654129583513775, 0.3834364995096303362031753394, 1.76478419106179032921927469163, 2.31114154118858867450503631525, 3.52128285214082277138874656898, 4.23888387904412816459517291867, 5.04638160090665722485359287588, 5.83246036159451516909782461303, 6.47179975041017378694540778702, 7.0608376275266414071280063760, 7.68508740819888304442195272384, 8.75306060697034200849272835695, 9.66313622206235889217649970005, 9.96590306534066003599795252723, 10.92156140755795626716985229071, 11.61802186591049585888932800745, 12.12187774956396721286181648827, 12.85628018422539198961256462409, 13.429023180549236368121710015214, 14.10298495331486788982112534796, 15.107188192554149485593132642056, 15.83992587269591521738466035522, 16.32275533466551024417009049512, 17.09066661341142222704726797786, 17.37878849127784845768930471341, 18.498436146798507868473513456945

Graph of the ZZ-function along the critical line