L(s) = 1 | + (−0.951 − 0.309i)3-s − 7-s + (0.809 + 0.587i)9-s + (−0.587 + 0.809i)13-s + (−0.309 − 0.951i)17-s + (−0.951 + 0.309i)19-s + (0.951 + 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (−0.309 − 0.951i)31-s + (−0.587 + 0.809i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s − i·43-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.309i)3-s − 7-s + (0.809 + 0.587i)9-s + (−0.587 + 0.809i)13-s + (−0.309 − 0.951i)17-s + (−0.951 + 0.309i)19-s + (0.951 + 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (−0.309 − 0.951i)31-s + (−0.587 + 0.809i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s − i·43-s + ⋯ |
Λ(s)=(=(4400s/2ΓR(s)L(s)(0.990+0.140i)Λ(1−s)
Λ(s)=(=(4400s/2ΓR(s)L(s)(0.990+0.140i)Λ(1−s)
Degree: |
1 |
Conductor: |
4400
= 24⋅52⋅11
|
Sign: |
0.990+0.140i
|
Analytic conductor: |
20.4335 |
Root analytic conductor: |
20.4335 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4400(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 4400, (0: ), 0.990+0.140i)
|
Particular Values
L(21) |
≈ |
0.3920915950+0.02776157387i |
L(21) |
≈ |
0.3920915950+0.02776157387i |
L(1) |
≈ |
0.5377296194−0.03917557612i |
L(1) |
≈ |
0.5377296194−0.03917557612i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1 |
good | 3 | 1+(−0.951−0.309i)T |
| 7 | 1−T |
| 13 | 1+(−0.587+0.809i)T |
| 17 | 1+(−0.309−0.951i)T |
| 19 | 1+(−0.951+0.309i)T |
| 23 | 1+(−0.809+0.587i)T |
| 29 | 1+(−0.951−0.309i)T |
| 31 | 1+(−0.309−0.951i)T |
| 37 | 1+(−0.587+0.809i)T |
| 41 | 1+(−0.809−0.587i)T |
| 43 | 1−iT |
| 47 | 1+(−0.309+0.951i)T |
| 53 | 1+(−0.951−0.309i)T |
| 59 | 1+(0.587−0.809i)T |
| 61 | 1+(0.587+0.809i)T |
| 67 | 1+(0.951−0.309i)T |
| 71 | 1+(0.309−0.951i)T |
| 73 | 1+(−0.809+0.587i)T |
| 79 | 1+(0.309−0.951i)T |
| 83 | 1+(−0.951+0.309i)T |
| 89 | 1+(0.809−0.587i)T |
| 97 | 1+(0.309−0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.20012871251016780207506868974, −17.44433041660767593708795773307, −16.996209449865126201004239141560, −16.26732802959076770590628740949, −15.73834439601073372515820088712, −15.02644259405022580941917426914, −14.4428212146136480348924665270, −13.15402746439517321549819014114, −12.81055328308936898087140478890, −12.312009642701794932877201663463, −11.433058170274662396040498029487, −10.566702819539977475974443267508, −10.29690269334647147665407837161, −9.52419778305527882322420085799, −8.73969179725757250233415911906, −7.870996880262008958433249711048, −6.835002458707671021972504234995, −6.49477039327569362323569288747, −5.66800116946514276425609862467, −5.06352045348682826228194963445, −4.093795988423035501938203763, −3.5599013034950681146381107340, −2.53545788719077861008714280553, −1.55335392740191637995372529392, −0.29688652814926654129583513775,
0.3834364995096303362031753394, 1.76478419106179032921927469163, 2.31114154118858867450503631525, 3.52128285214082277138874656898, 4.23888387904412816459517291867, 5.04638160090665722485359287588, 5.83246036159451516909782461303, 6.47179975041017378694540778702, 7.0608376275266414071280063760, 7.68508740819888304442195272384, 8.75306060697034200849272835695, 9.66313622206235889217649970005, 9.96590306534066003599795252723, 10.92156140755795626716985229071, 11.61802186591049585888932800745, 12.12187774956396721286181648827, 12.85628018422539198961256462409, 13.429023180549236368121710015214, 14.10298495331486788982112534796, 15.107188192554149485593132642056, 15.83992587269591521738466035522, 16.32275533466551024417009049512, 17.09066661341142222704726797786, 17.37878849127784845768930471341, 18.498436146798507868473513456945