L(s) = 1 | + (−0.522 + 0.852i)2-s + (−0.999 + 0.0318i)3-s + (−0.453 − 0.891i)4-s + (0.830 + 0.556i)5-s + (0.495 − 0.868i)6-s + (0.999 + 0.0159i)7-s + (0.996 + 0.0796i)8-s + (0.997 − 0.0637i)9-s + (−0.908 + 0.417i)10-s + (0.996 + 0.0875i)11-s + (0.481 + 0.876i)12-s + (0.839 − 0.543i)13-s + (−0.536 + 0.843i)14-s + (−0.848 − 0.529i)15-s + (−0.589 + 0.808i)16-s + (−0.726 − 0.687i)17-s + ⋯ |
L(s) = 1 | + (−0.522 + 0.852i)2-s + (−0.999 + 0.0318i)3-s + (−0.453 − 0.891i)4-s + (0.830 + 0.556i)5-s + (0.495 − 0.868i)6-s + (0.999 + 0.0159i)7-s + (0.996 + 0.0796i)8-s + (0.997 − 0.0637i)9-s + (−0.908 + 0.417i)10-s + (0.996 + 0.0875i)11-s + (0.481 + 0.876i)12-s + (0.839 − 0.543i)13-s + (−0.536 + 0.843i)14-s + (−0.848 − 0.529i)15-s + (−0.589 + 0.808i)16-s + (−0.726 − 0.687i)17-s + ⋯ |
Λ(s)=(=(4729s/2ΓR(s)L(s)(0.981−0.191i)Λ(1−s)
Λ(s)=(=(4729s/2ΓR(s)L(s)(0.981−0.191i)Λ(1−s)
Degree: |
1 |
Conductor: |
4729
|
Sign: |
0.981−0.191i
|
Analytic conductor: |
21.9613 |
Root analytic conductor: |
21.9613 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4729(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 4729, (0: ), 0.981−0.191i)
|
Particular Values
L(21) |
≈ |
1.297441203−0.1253273283i |
L(21) |
≈ |
1.297441203−0.1253273283i |
L(1) |
≈ |
0.8266420280+0.2088557155i |
L(1) |
≈ |
0.8266420280+0.2088557155i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4729 | 1 |
good | 2 | 1+(−0.522+0.852i)T |
| 3 | 1+(−0.999+0.0318i)T |
| 5 | 1+(0.830+0.556i)T |
| 7 | 1+(0.999+0.0159i)T |
| 11 | 1+(0.996+0.0875i)T |
| 13 | 1+(0.839−0.543i)T |
| 17 | 1+(−0.726−0.687i)T |
| 19 | 1+(0.721−0.692i)T |
| 23 | 1+(0.582−0.812i)T |
| 29 | 1+(−0.852+0.522i)T |
| 31 | 1+(−0.127−0.991i)T |
| 37 | 1+(−0.639−0.768i)T |
| 41 | 1+(−0.798+0.601i)T |
| 43 | 1+(−0.941−0.336i)T |
| 47 | 1+(−0.952−0.305i)T |
| 53 | 1+(0.988−0.150i)T |
| 59 | 1+(−0.959−0.283i)T |
| 61 | 1+(−0.474−0.880i)T |
| 67 | 1+(0.981−0.190i)T |
| 71 | 1+(−0.260−0.965i)T |
| 73 | 1+(−0.576+0.817i)T |
| 79 | 1−iT |
| 83 | 1+(0.975−0.221i)T |
| 89 | 1+(0.343+0.939i)T |
| 97 | 1+(−0.999−0.0159i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.16376692000884747432612211413, −17.4703965476424368147888939044, −17.07313451616562549298655652367, −16.60772086853418976404447572734, −15.79456297899583150978114352980, −14.760521394789082379153589151624, −13.74331933422170509183940759566, −13.45716949605677981753118221159, −12.60153146095706030648293550356, −11.74608261736807252251888827273, −11.59547491327633500273431515810, −10.74516870596481271017512872416, −10.18832032854001329307500579310, −9.34717322906448874208095519438, −8.81766087464080085275193552658, −8.12422800179530584558646656941, −7.119866780342395630490866067516, −6.41418430133249549636172242217, −5.52854184302331153808020008657, −4.89033521381581010697921882918, −4.14234834064564074707248666490, −3.47921747194079707610705227011, −1.98081763236127311602517900121, −1.43432524944966081362416366705, −1.18431576837002347875639738548,
0.52946997334940759512578995650, 1.44661561116746624601931290122, 2.01166902473648145191407169112, 3.46406714952924960790448248293, 4.542023804576196187117597137, 5.12662108890531108338507787910, 5.695911300366234986584771958903, 6.51318203175070898578977705034, 6.90753556459528336863940365975, 7.60905055194743379604346446181, 8.65357679816812049652918420639, 9.25169030684625465802809263389, 9.913769052377925899119156901262, 10.8156783191330039895671870212, 11.09754514321335715126868209153, 11.761067910896692360303843284645, 12.99615053270067527520103122333, 13.56996823459652447016930105618, 14.203569276791842969038849564, 15.08707187002994848817440663138, 15.3230951959475006386764933645, 16.441533190089963892101438336075, 16.8434266372277672394069562090, 17.54495337846929550698200029894, 18.06582351669747503977769880858