L(s) = 1 | + (0.258 + 0.965i)3-s + (−0.866 + 0.5i)9-s + (0.965 − 0.258i)11-s − 13-s + (−0.866 + 0.5i)19-s + (−0.258 + 0.965i)23-s + (−0.707 − 0.707i)27-s + (0.707 − 0.707i)29-s + (0.258 + 0.965i)31-s + (0.5 + 0.866i)33-s + (−0.965 − 0.258i)37-s + (−0.258 − 0.965i)39-s + (−0.707 − 0.707i)41-s − i·43-s + (−0.5 − 0.866i)47-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)3-s + (−0.866 + 0.5i)9-s + (0.965 − 0.258i)11-s − 13-s + (−0.866 + 0.5i)19-s + (−0.258 + 0.965i)23-s + (−0.707 − 0.707i)27-s + (0.707 − 0.707i)29-s + (0.258 + 0.965i)31-s + (0.5 + 0.866i)33-s + (−0.965 − 0.258i)37-s + (−0.258 − 0.965i)39-s + (−0.707 − 0.707i)41-s − i·43-s + (−0.5 − 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.275 - 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.275 - 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4794341845 - 0.3615082771i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4794341845 - 0.3615082771i\) |
\(L(1)\) |
\(\approx\) |
\(0.8964900106 + 0.2480937604i\) |
\(L(1)\) |
\(\approx\) |
\(0.8964900106 + 0.2480937604i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.258 + 0.965i)T \) |
| 11 | \( 1 + (0.965 - 0.258i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.258 + 0.965i)T \) |
| 29 | \( 1 + (0.707 - 0.707i)T \) |
| 31 | \( 1 + (0.258 + 0.965i)T \) |
| 37 | \( 1 + (-0.965 - 0.258i)T \) |
| 41 | \( 1 + (-0.707 - 0.707i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.258 - 0.965i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.707 - 0.707i)T \) |
| 73 | \( 1 + (0.258 + 0.965i)T \) |
| 79 | \( 1 + (0.258 - 0.965i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.707 - 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.34000551502316252053476355438, −17.55101146219225923617404176072, −17.116904569011184811540102675093, −16.51907911292878978404145406067, −15.43033432939846999131103792980, −14.68773420147223021103357600528, −14.38149194966789611984395259700, −13.57144362001983682094891478519, −12.81918366128966383003779010436, −12.27919168378692350007144726494, −11.7603898619203591919383887421, −10.95568355660344641692819311259, −10.074400140320878128738023772086, −9.28181885167279276750446287959, −8.68791578712790908059127350298, −7.94565698148229295085380709996, −7.26373323066626594317468346270, −6.45979679808130301518312251391, −6.23038711680064483605096147080, −4.92881925202337439052731393420, −4.390678470376935549326110635074, −3.28485365786065286076072078073, −2.57511562704275116838490302233, −1.84158676613036967415542630382, −1.018241846526145928854834302857,
0.156650588727731560560388166026, 1.644708044237540223468223834713, 2.3693671016130372280575564614, 3.44880074583953836323492337942, 3.80087792812307916888651586607, 4.76685079988833927629852722809, 5.27744304663824431952574879654, 6.21597702210377349023229117892, 6.91321907705601700786350188933, 7.88396187140543288158855319429, 8.57098277259237611072726355106, 9.159011398170656727244508747492, 9.933186893576065583847815507015, 10.35213059681203390411363953625, 11.20665764287824267502607902905, 11.93130090389543097177564847130, 12.42012651250208350433708017125, 13.586329981356605776276112436263, 14.134288166285138509496312988869, 14.63286576431102683828721872143, 15.42357244523053107452552065837, 15.84807753213833136160306995949, 16.825430628796114475285300112242, 17.14029712712123256856132876750, 17.73573558097533000816842936342