Properties

Label 1-520-520.259-r1-0-0
Degree 11
Conductor 520520
Sign 11
Analytic cond. 55.881755.8817
Root an. cond. 55.881755.8817
Motivic weight 00
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 11-s − 17-s − 19-s + 21-s + 23-s − 27-s − 29-s + 31-s + 33-s − 37-s − 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + 71-s + 73-s + ⋯
L(s)  = 1  − 3-s − 7-s + 9-s − 11-s − 17-s − 19-s + 21-s + 23-s − 27-s − 29-s + 31-s + 33-s − 37-s − 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + 71-s + 73-s + ⋯

Functional equation

Λ(s)=(520s/2ΓR(s+1)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(520s/2ΓR(s+1)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 11
Analytic conductor: 55.881755.8817
Root analytic conductor: 55.881755.8817
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: χ520(259,)\chi_{520} (259, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (1, 520, (1: ), 1)(1,\ 520,\ (1:\ ),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.51482029900.5148202990
L(12)L(\frac12) \approx 0.51482029900.5148202990
L(1)L(1) \approx 0.55107180600.5510718060
L(1)L(1) \approx 0.55107180600.5510718060

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1T 1 - T
7 1T 1 - T
11 1T 1 - T
17 1T 1 - T
19 1T 1 - T
23 1+T 1 + T
29 1T 1 - T
31 1+T 1 + T
37 1T 1 - T
41 1T 1 - T
43 1T 1 - T
47 1T 1 - T
53 1+T 1 + T
59 1T 1 - T
61 1T 1 - T
67 1+T 1 + T
71 1+T 1 + T
73 1+T 1 + T
79 1T 1 - T
83 1+T 1 + T
89 1T 1 - T
97 1+T 1 + T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.09707377972868128018937781483, −22.72418238364784555759794173295, −21.70491731815742168912800708006, −21.0482588132289447096488611110, −19.88298558957835339677332766670, −18.907317891868830967075490635568, −18.33069348129050378369843404392, −17.222503621981959000857993914435, −16.67709708897373370975893943168, −15.61706518541201909087792985322, −15.22090808881279009348537786166, −13.45200329371061067476258440370, −13.01908459021767277876184131691, −12.14952871468906681125493356351, −11.04508347773828008508857891623, −10.41596331304031995801954993560, −9.511526498722929217846882569523, −8.36237745467781401456136119648, −7.02788207198529074584542600041, −6.46796012170503251356478368880, −5.409260178176494348875078319853, −4.53173229427681136337963490431, −3.29460287980216002325118225496, −1.99999002129155580385294339465, −0.38464189291356244580902717207, 0.38464189291356244580902717207, 1.99999002129155580385294339465, 3.29460287980216002325118225496, 4.53173229427681136337963490431, 5.409260178176494348875078319853, 6.46796012170503251356478368880, 7.02788207198529074584542600041, 8.36237745467781401456136119648, 9.511526498722929217846882569523, 10.41596331304031995801954993560, 11.04508347773828008508857891623, 12.14952871468906681125493356351, 13.01908459021767277876184131691, 13.45200329371061067476258440370, 15.22090808881279009348537786166, 15.61706518541201909087792985322, 16.67709708897373370975893943168, 17.222503621981959000857993914435, 18.33069348129050378369843404392, 18.907317891868830967075490635568, 19.88298558957835339677332766670, 21.0482588132289447096488611110, 21.70491731815742168912800708006, 22.72418238364784555759794173295, 23.09707377972868128018937781483

Graph of the ZZ-function along the critical line