L(s) = 1 | − 3-s − 7-s + 9-s − 11-s − 17-s − 19-s + 21-s + 23-s − 27-s − 29-s + 31-s + 33-s − 37-s − 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + 71-s + 73-s + ⋯ |
L(s) = 1 | − 3-s − 7-s + 9-s − 11-s − 17-s − 19-s + 21-s + 23-s − 27-s − 29-s + 31-s + 33-s − 37-s − 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + 71-s + 73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5148202990\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5148202990\) |
\(L(1)\) |
\(\approx\) |
\(0.5510718060\) |
\(L(1)\) |
\(\approx\) |
\(0.5510718060\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.09707377972868128018937781483, −22.72418238364784555759794173295, −21.70491731815742168912800708006, −21.0482588132289447096488611110, −19.88298558957835339677332766670, −18.907317891868830967075490635568, −18.33069348129050378369843404392, −17.222503621981959000857993914435, −16.67709708897373370975893943168, −15.61706518541201909087792985322, −15.22090808881279009348537786166, −13.45200329371061067476258440370, −13.01908459021767277876184131691, −12.14952871468906681125493356351, −11.04508347773828008508857891623, −10.41596331304031995801954993560, −9.511526498722929217846882569523, −8.36237745467781401456136119648, −7.02788207198529074584542600041, −6.46796012170503251356478368880, −5.409260178176494348875078319853, −4.53173229427681136337963490431, −3.29460287980216002325118225496, −1.99999002129155580385294339465, −0.38464189291356244580902717207,
0.38464189291356244580902717207, 1.99999002129155580385294339465, 3.29460287980216002325118225496, 4.53173229427681136337963490431, 5.409260178176494348875078319853, 6.46796012170503251356478368880, 7.02788207198529074584542600041, 8.36237745467781401456136119648, 9.511526498722929217846882569523, 10.41596331304031995801954993560, 11.04508347773828008508857891623, 12.14952871468906681125493356351, 13.01908459021767277876184131691, 13.45200329371061067476258440370, 15.22090808881279009348537786166, 15.61706518541201909087792985322, 16.67709708897373370975893943168, 17.222503621981959000857993914435, 18.33069348129050378369843404392, 18.907317891868830967075490635568, 19.88298558957835339677332766670, 21.0482588132289447096488611110, 21.70491731815742168912800708006, 22.72418238364784555759794173295, 23.09707377972868128018937781483