Properties

Label 1-5e2-25.13-r1-0-0
Degree 11
Conductor 2525
Sign 0.1870.982i0.187 - 0.982i
Analytic cond. 2.686622.68662
Root an. cond. 2.686622.68662
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.951 − 0.309i)2-s + (−0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.809 − 0.587i)6-s i·7-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)9-s + (0.309 + 0.951i)11-s + (−0.951 − 0.309i)12-s + (0.951 + 0.309i)13-s + (−0.309 − 0.951i)14-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + i·18-s + (0.809 + 0.587i)19-s + ⋯
L(s)  = 1  + (0.951 − 0.309i)2-s + (−0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.809 − 0.587i)6-s i·7-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)9-s + (0.309 + 0.951i)11-s + (−0.951 − 0.309i)12-s + (0.951 + 0.309i)13-s + (−0.309 − 0.951i)14-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + i·18-s + (0.809 + 0.587i)19-s + ⋯

Functional equation

Λ(s)=(25s/2ΓR(s+1)L(s)=((0.1870.982i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(25s/2ΓR(s+1)L(s)=((0.1870.982i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 2525    =    525^{2}
Sign: 0.1870.982i0.187 - 0.982i
Analytic conductor: 2.686622.68662
Root analytic conductor: 2.686622.68662
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ25(13,)\chi_{25} (13, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 25, (1: ), 0.1870.982i)(1,\ 25,\ (1:\ ),\ 0.187 - 0.982i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.4822184651.226197754i1.482218465 - 1.226197754i
L(12)L(\frac12) \approx 1.4822184651.226197754i1.482218465 - 1.226197754i
L(1)L(1) \approx 1.3788023740.7129109418i1.378802374 - 0.7129109418i
L(1)L(1) \approx 1.3788023740.7129109418i1.378802374 - 0.7129109418i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
good2 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
3 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
7 1iT 1 - iT
11 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
13 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
17 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
19 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
23 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
29 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
31 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
37 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
41 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
43 1+iT 1 + iT
47 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
53 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
59 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
61 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
67 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
71 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
73 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
79 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
83 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
89 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
97 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−38.4452568534993322207135798615, −37.74583052648439184978635236180, −35.148544981062632168677880280817, −34.430937675677178326012078771082, −33.12199662141554282205170977353, −32.19829178912301325466792523076, −31.01676168048359971116478493543, −29.3956505188558257526594211547, −28.20148379648412894448495556373, −26.63347539267659867738715781851, −25.14731898512247250354570849926, −23.80309499718615968431776583302, −22.35576466016837459450057651849, −21.681153704098747260886540395419, −20.326983525217915866082945291589, −18.01987117849817655242877267313, −16.243900265057743914117467792210, −15.5407910552972031602988945058, −13.93504548429567351049649728926, −12.09271183978261830717139328509, −11.01035637784640690626539889546, −8.78700865446590678715430717171, −6.3107254305470667701549426079, −5.12731131686940929145413272001, −3.299412304185740963460154106670, 1.58220676000882298958522643392, 4.159560687065339514036455869063, 6.0762064126980081679370655263, 7.39593930121967567884613681378, 10.4178092774473160463202280021, 11.74692761578520974197903825592, 13.07143163162304960966022768946, 14.167424483808897243122084319674, 16.11990570142744652770830929631, 17.67324902540025821502366222951, 19.404237458897755627662812147778, 20.58085192224977800941300201367, 22.37283659680972527442878489317, 23.31070693443765994536139747628, 24.270126704651321674008307671680, 25.74427898855974964160548641100, 28.00979912702797634246984899424, 29.10355236216309161927950165122, 30.27505466527500294819961545390, 30.994475497945596764249261700722, 32.94093397731409517051495856432, 33.63428978147748324985848301743, 35.25730937377627798835378689423, 36.470756307170771026140700066559, 38.09866824913236886118927208397

Graph of the ZZ-function along the critical line