Properties

Label 1-60-60.59-r0-0-0
Degree 11
Conductor 6060
Sign 11
Analytic cond. 0.2786380.278638
Root an. cond. 0.2786380.278638
Motivic weight 00
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 11-s − 13-s + 17-s − 19-s − 23-s − 29-s − 31-s − 37-s − 41-s + 43-s − 47-s + 49-s + 53-s + 59-s + 61-s + 67-s + 71-s − 73-s + 77-s − 79-s − 83-s − 89-s − 91-s − 97-s + ⋯
L(s)  = 1  + 7-s + 11-s − 13-s + 17-s − 19-s − 23-s − 29-s − 31-s − 37-s − 41-s + 43-s − 47-s + 49-s + 53-s + 59-s + 61-s + 67-s + 71-s − 73-s + 77-s − 79-s − 83-s − 89-s − 91-s − 97-s + ⋯

Functional equation

Λ(s)=(60s/2ΓR(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(60s/2ΓR(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 6060    =    22352^{2} \cdot 3 \cdot 5
Sign: 11
Analytic conductor: 0.2786380.278638
Root analytic conductor: 0.2786380.278638
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: χ60(59,)\chi_{60} (59, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (1, 60, (0: ), 1)(1,\ 60,\ (0:\ ),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.96187971590.9618797159
L(12)L(\frac12) \approx 0.96187971590.9618797159
L(1)L(1) \approx 1.0655543201.065554320
L(1)L(1) \approx 1.0655543201.065554320

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
good7 1+T 1 + T
11 1+T 1 + T
13 1T 1 - T
17 1+T 1 + T
19 1T 1 - T
23 1T 1 - T
29 1T 1 - T
31 1T 1 - T
37 1T 1 - T
41 1T 1 - T
43 1+T 1 + T
47 1T 1 - T
53 1+T 1 + T
59 1+T 1 + T
61 1+T 1 + T
67 1+T 1 + T
71 1+T 1 + T
73 1T 1 - T
79 1T 1 - T
83 1T 1 - T
89 1T 1 - T
97 1T 1 - T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−32.58262270514236334702277741913, −31.56412029546067390492273146917, −30.28370271838972914813392774493, −29.56153792303208874429096790028, −27.86125861653568212621604974582, −27.34677171069150831416030737867, −25.89354093744892243070839471337, −24.673927390561852209576229240424, −23.800425575409428011559961836279, −22.36432718487739382101850758381, −21.328431099039773488357789758822, −20.11799276794188069833039241236, −18.9285284080218204999053966311, −17.554960636106842748012592192039, −16.66706135687040887534297750505, −14.9070292412479863596844040316, −14.21207272889969396426157491711, −12.45813508004805044439217178808, −11.39941638239152605493477803422, −9.94252189246792938879975776348, −8.485164567234391764673881624397, −7.166280912138318471719556203672, −5.46144112265697581553500848609, −3.985806388187321605499007281285, −1.88060641687791880942488827805, 1.88060641687791880942488827805, 3.985806388187321605499007281285, 5.46144112265697581553500848609, 7.166280912138318471719556203672, 8.485164567234391764673881624397, 9.94252189246792938879975776348, 11.39941638239152605493477803422, 12.45813508004805044439217178808, 14.21207272889969396426157491711, 14.9070292412479863596844040316, 16.66706135687040887534297750505, 17.554960636106842748012592192039, 18.9285284080218204999053966311, 20.11799276794188069833039241236, 21.328431099039773488357789758822, 22.36432718487739382101850758381, 23.800425575409428011559961836279, 24.673927390561852209576229240424, 25.89354093744892243070839471337, 27.34677171069150831416030737867, 27.86125861653568212621604974582, 29.56153792303208874429096790028, 30.28370271838972914813392774493, 31.56412029546067390492273146917, 32.58262270514236334702277741913

Graph of the ZZ-function along the critical line