L(s) = 1 | + 7-s + 11-s − 13-s + 17-s − 19-s − 23-s − 29-s − 31-s − 37-s − 41-s + 43-s − 47-s + 49-s + 53-s + 59-s + 61-s + 67-s + 71-s − 73-s + 77-s − 79-s − 83-s − 89-s − 91-s − 97-s + ⋯ |
L(s) = 1 | + 7-s + 11-s − 13-s + 17-s − 19-s − 23-s − 29-s − 31-s − 37-s − 41-s + 43-s − 47-s + 49-s + 53-s + 59-s + 61-s + 67-s + 71-s − 73-s + 77-s − 79-s − 83-s − 89-s − 91-s − 97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9618797159\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9618797159\) |
\(L(1)\) |
\(\approx\) |
\(1.065554320\) |
\(L(1)\) |
\(\approx\) |
\(1.065554320\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−32.58262270514236334702277741913, −31.56412029546067390492273146917, −30.28370271838972914813392774493, −29.56153792303208874429096790028, −27.86125861653568212621604974582, −27.34677171069150831416030737867, −25.89354093744892243070839471337, −24.673927390561852209576229240424, −23.800425575409428011559961836279, −22.36432718487739382101850758381, −21.328431099039773488357789758822, −20.11799276794188069833039241236, −18.9285284080218204999053966311, −17.554960636106842748012592192039, −16.66706135687040887534297750505, −14.9070292412479863596844040316, −14.21207272889969396426157491711, −12.45813508004805044439217178808, −11.39941638239152605493477803422, −9.94252189246792938879975776348, −8.485164567234391764673881624397, −7.166280912138318471719556203672, −5.46144112265697581553500848609, −3.985806388187321605499007281285, −1.88060641687791880942488827805,
1.88060641687791880942488827805, 3.985806388187321605499007281285, 5.46144112265697581553500848609, 7.166280912138318471719556203672, 8.485164567234391764673881624397, 9.94252189246792938879975776348, 11.39941638239152605493477803422, 12.45813508004805044439217178808, 14.21207272889969396426157491711, 14.9070292412479863596844040316, 16.66706135687040887534297750505, 17.554960636106842748012592192039, 18.9285284080218204999053966311, 20.11799276794188069833039241236, 21.328431099039773488357789758822, 22.36432718487739382101850758381, 23.800425575409428011559961836279, 24.673927390561852209576229240424, 25.89354093744892243070839471337, 27.34677171069150831416030737867, 27.86125861653568212621604974582, 29.56153792303208874429096790028, 30.28370271838972914813392774493, 31.56412029546067390492273146917, 32.58262270514236334702277741913