L(s) = 1 | + (0.866 + 0.5i)5-s + (−0.866 + 0.5i)7-s + (−0.866 + 0.5i)11-s + (−0.5 + 0.866i)13-s + 19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (−0.866 + 0.5i)29-s + (−0.866 − 0.5i)31-s − 35-s − i·37-s + (−0.866 − 0.5i)41-s + (−0.5 − 0.866i)43-s + (0.5 + 0.866i)47-s + (0.5 − 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)5-s + (−0.866 + 0.5i)7-s + (−0.866 + 0.5i)11-s + (−0.5 + 0.866i)13-s + 19-s + (0.866 + 0.5i)23-s + (0.5 + 0.866i)25-s + (−0.866 + 0.5i)29-s + (−0.866 − 0.5i)31-s − 35-s − i·37-s + (−0.866 − 0.5i)41-s + (−0.5 − 0.866i)43-s + (0.5 + 0.866i)47-s + (0.5 − 0.866i)49-s + ⋯ |
Λ(s)=(=(612s/2ΓR(s+1)L(s)(−0.883−0.469i)Λ(1−s)
Λ(s)=(=(612s/2ΓR(s+1)L(s)(−0.883−0.469i)Λ(1−s)
Degree: |
1 |
Conductor: |
612
= 22⋅32⋅17
|
Sign: |
−0.883−0.469i
|
Analytic conductor: |
65.7685 |
Root analytic conductor: |
65.7685 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ612(259,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 612, (1: ), −0.883−0.469i)
|
Particular Values
L(21) |
≈ |
−0.09540903430+0.3829227012i |
L(21) |
≈ |
−0.09540903430+0.3829227012i |
L(1) |
≈ |
0.8642033524+0.2486131522i |
L(1) |
≈ |
0.8642033524+0.2486131522i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1 |
good | 5 | 1+(0.866+0.5i)T |
| 7 | 1+(−0.866+0.5i)T |
| 11 | 1+(−0.866+0.5i)T |
| 13 | 1+(−0.5+0.866i)T |
| 19 | 1+T |
| 23 | 1+(0.866+0.5i)T |
| 29 | 1+(−0.866+0.5i)T |
| 31 | 1+(−0.866−0.5i)T |
| 37 | 1−iT |
| 41 | 1+(−0.866−0.5i)T |
| 43 | 1+(−0.5−0.866i)T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1−T |
| 59 | 1+(−0.5+0.866i)T |
| 61 | 1+(0.866−0.5i)T |
| 67 | 1+(0.5−0.866i)T |
| 71 | 1−iT |
| 73 | 1−iT |
| 79 | 1+(−0.866+0.5i)T |
| 83 | 1+(−0.5−0.866i)T |
| 89 | 1+T |
| 97 | 1+(−0.866+0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.27722225008360645258683555530, −21.63021481773371080194382256049, −20.46740690904437191251664841560, −20.21718313688049738329146104510, −18.96663154430347965171437668336, −18.226595665923756420735575787730, −17.25457737152801886140641507301, −16.585270894133360241028650610828, −15.8400900865394222626826683677, −14.79300396229439119284800818296, −13.66534821927820368448035720636, −13.13575108920864980301880800235, −12.50210778095989812373848261177, −11.16030316689218070228092404835, −10.160549009182770409788380167498, −9.6879310338161606527267113782, −8.61109078303353629791404001071, −7.597392565034497180064213514474, −6.5857262917475046974087130556, −5.55595375583413445180849417050, −4.92608250293959050017162146290, −3.40162806959528072872605841623, −2.62954488011918370167237005876, −1.170805268832044619818929205325, −0.09346994510256607597638448387,
1.74785483355286004305356905976, 2.615378352226111321764645484822, 3.55374823670906440066982328067, 5.10431585826206078664828861690, 5.73068881491345424481963492641, 6.88297043560690482251916436541, 7.454552534922015809391116455233, 9.09986469493126946795685808900, 9.51208772997280266348464180285, 10.40791477533569089930881052059, 11.38140132109734101936181381347, 12.498798078492825558637046209197, 13.17973210964391064811974530881, 14.044143204499813208667675647615, 14.949908264912354986277897778543, 15.77207083416223112898620457668, 16.69301683282679888678570886260, 17.5389331389498053093660420586, 18.54281185515901890473426822992, 18.872124305454373339684334369422, 20.06818302492790155698797181235, 20.93155662010394644613006003158, 21.82657516027108233285983256504, 22.30536174491850706658187718268, 23.20378185194730403310954907503