L(s) = 1 | + (−0.104 − 0.994i)11-s + (0.913 − 0.406i)13-s + (−0.669 + 0.743i)17-s + (0.978 + 0.207i)19-s + (0.913 + 0.406i)23-s + (0.978 − 0.207i)29-s + (−0.309 − 0.951i)31-s + (0.913 − 0.406i)37-s + (−0.913 + 0.406i)41-s + (0.5 + 0.866i)43-s + (0.309 − 0.951i)47-s + (0.978 − 0.207i)53-s + (−0.809 − 0.587i)59-s + (−0.809 + 0.587i)61-s + (−0.309 − 0.951i)67-s + ⋯ |
L(s) = 1 | + (−0.104 − 0.994i)11-s + (0.913 − 0.406i)13-s + (−0.669 + 0.743i)17-s + (0.978 + 0.207i)19-s + (0.913 + 0.406i)23-s + (0.978 − 0.207i)29-s + (−0.309 − 0.951i)31-s + (0.913 − 0.406i)37-s + (−0.913 + 0.406i)41-s + (0.5 + 0.866i)43-s + (0.309 − 0.951i)47-s + (0.978 − 0.207i)53-s + (−0.809 − 0.587i)59-s + (−0.809 + 0.587i)61-s + (−0.309 − 0.951i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.828 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.828 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.943392032 - 0.5947319375i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.943392032 - 0.5947319375i\) |
\(L(1)\) |
\(\approx\) |
\(1.177870003 - 0.1137300201i\) |
\(L(1)\) |
\(\approx\) |
\(1.177870003 - 0.1137300201i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.913 - 0.406i)T \) |
| 17 | \( 1 + (-0.669 + 0.743i)T \) |
| 19 | \( 1 + (0.978 + 0.207i)T \) |
| 23 | \( 1 + (0.913 + 0.406i)T \) |
| 29 | \( 1 + (0.978 - 0.207i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.913 - 0.406i)T \) |
| 41 | \( 1 + (-0.913 + 0.406i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.978 - 0.207i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.913 + 0.406i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.669 - 0.743i)T \) |
| 89 | \( 1 + (0.104 + 0.994i)T \) |
| 97 | \( 1 + (-0.978 + 0.207i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.80622232749662768178386822667, −17.072825694691367932615398107000, −16.292428357128628893559482774, −15.7156817692044782097636295461, −15.23354787064838968253138897673, −14.35398035108394466855056852129, −13.75255200679635938530364835687, −13.21675177099593835489981470180, −12.35638306602269419809990496360, −11.86793541147723708433721842706, −11.05342873381260448536756179081, −10.523213157651532256349436525, −9.68027171086780631500770933111, −9.046314769733220804606735006043, −8.534940163218754709838585375224, −7.5087756378967634046054226739, −6.99624119793174165685383687735, −6.40373309803121384081123059686, −5.42391813213564694949537564942, −4.76505383793044610044976706978, −4.188090604022636025027876662502, −3.176506930157287909545819994758, −2.57504740230815084593074435310, −1.60409916215149372944629403836, −0.84954296265013008645274402149,
0.67025027378051421412429199789, 1.35890348301093291971568997368, 2.41679901060900135625097000701, 3.242780303850525285145819507638, 3.75915492077582874174037563946, 4.67381683477219319766180652963, 5.522268573589989765168070669134, 6.08155273909097575463389525859, 6.70632612758531036474353867336, 7.72556003827572731621105969641, 8.197623531678539453564844213286, 8.926235122275586586082844214745, 9.5338789829109742368674750485, 10.465772726627149843661597950, 11.00079523629302227424596015417, 11.52176026761267710647066546750, 12.32369062905934103146230056415, 13.295287757352731884597022629401, 13.42399573944936879854703807398, 14.229624822386254628025707646471, 15.15208146240614807020533653364, 15.51533079026947633805319564626, 16.34925741922981579995225106782, 16.79588610868286632772826891021, 17.60690427743376822686917540059