L(s) = 1 | + (0.669 − 0.743i)11-s + (−0.743 + 0.669i)13-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (−0.207 + 0.978i)23-s + (0.913 + 0.406i)29-s + (0.913 − 0.406i)31-s + (0.951 + 0.309i)37-s + (0.669 + 0.743i)41-s + (0.866 − 0.5i)43-s + (0.406 − 0.913i)47-s + (−0.587 − 0.809i)53-s + (0.669 + 0.743i)59-s + (−0.669 + 0.743i)61-s + (−0.406 − 0.913i)67-s + ⋯ |
L(s) = 1 | + (0.669 − 0.743i)11-s + (−0.743 + 0.669i)13-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (−0.207 + 0.978i)23-s + (0.913 + 0.406i)29-s + (0.913 − 0.406i)31-s + (0.951 + 0.309i)37-s + (0.669 + 0.743i)41-s + (0.866 − 0.5i)43-s + (0.406 − 0.913i)47-s + (−0.587 − 0.809i)53-s + (0.669 + 0.743i)59-s + (−0.669 + 0.743i)61-s + (−0.406 − 0.913i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.031491915 + 0.2278683284i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.031491915 + 0.2278683284i\) |
\(L(1)\) |
\(\approx\) |
\(1.185358278 + 0.02313162983i\) |
\(L(1)\) |
\(\approx\) |
\(1.185358278 + 0.02313162983i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (0.669 - 0.743i)T \) |
| 13 | \( 1 + (-0.743 + 0.669i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.207 + 0.978i)T \) |
| 29 | \( 1 + (0.913 + 0.406i)T \) |
| 31 | \( 1 + (0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.669 + 0.743i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.406 - 0.913i)T \) |
| 53 | \( 1 + (-0.587 - 0.809i)T \) |
| 59 | \( 1 + (0.669 + 0.743i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (-0.406 - 0.913i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.951 + 0.309i)T \) |
| 79 | \( 1 + (0.913 + 0.406i)T \) |
| 83 | \( 1 + (-0.994 - 0.104i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.406 - 0.913i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.582899154824565486127545285945, −17.139639366362044242944067798, −16.237310765314796658446721734079, −15.681738990837046882171498189417, −14.89276679149167765920101774126, −14.44348486603947139179543992687, −13.804094250195875029481370209203, −12.86145796381954787659130759917, −12.31564915253734653175061804766, −11.93080025965324921903803838028, −10.9070031001565462309327040464, −10.34671329115102632198065462135, −9.636118015988050420948036134370, −9.131721728044093961630099684771, −8.11807702909150886886057797780, −7.681681950699946714530963114280, −6.867240614359337819665322869259, −6.18608268466675325120276234374, −5.46755067043944572128672313113, −4.53227980959674879475908601468, −4.186838474875200914345463906416, −2.98280927772635314749684280446, −2.56218740657667719458481610957, −1.46795084058430706487999976079, −0.69597547212162545364342758186,
0.81661906433569527564142660394, 1.47016109469767159349542567226, 2.584623685138511974701921243675, 3.17209776593780787195970170820, 4.03370606620103107601860534547, 4.71625895337940960816176381737, 5.57971315545377540605754699045, 6.12730592995456325549118198367, 7.0265215499481904989665160461, 7.56526453594271182068747076039, 8.32239535305620808164925952988, 9.1427056464708650130692196609, 9.68928402728641701517219492742, 10.23921501021950392158450584116, 11.29619610388493154337012806354, 11.79727579384696786200790581342, 12.14681869873518334688041272722, 13.19871300991887386116009587564, 13.89466490292569909036864742828, 14.26129650858842155090902277447, 14.944876977586817656180815051334, 15.88776292321046378236582213163, 16.33697756201338432269089304981, 16.92848039524635883998827294330, 17.61357278294196802197093102735