L(s) = 1 | − 3-s + 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 19-s − 21-s + 23-s + 25-s − 27-s − 29-s + 31-s + 33-s + 35-s − 37-s − 39-s + 41-s + 43-s + 45-s − 47-s + 49-s − 51-s + 53-s − 55-s + ⋯ |
L(s) = 1 | − 3-s + 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 19-s − 21-s + 23-s + 25-s − 27-s − 29-s + 31-s + 33-s + 35-s − 37-s − 39-s + 41-s + 43-s + 45-s − 47-s + 49-s − 51-s + 53-s − 55-s + ⋯ |
Λ(s)=(=(664s/2ΓR(s+1)L(s)Λ(1−s)
Λ(s)=(=(664s/2ΓR(s+1)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
664
= 23⋅83
|
Sign: |
1
|
Analytic conductor: |
71.3567 |
Root analytic conductor: |
71.3567 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ664(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 664, (1: ), 1)
|
Particular Values
L(21) |
≈ |
2.426574226 |
L(21) |
≈ |
2.426574226 |
L(1) |
≈ |
1.219174394 |
L(1) |
≈ |
1.219174394 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 83 | 1 |
good | 3 | 1−T |
| 5 | 1+T |
| 7 | 1+T |
| 11 | 1−T |
| 13 | 1+T |
| 17 | 1+T |
| 19 | 1+T |
| 23 | 1+T |
| 29 | 1−T |
| 31 | 1+T |
| 37 | 1−T |
| 41 | 1+T |
| 43 | 1+T |
| 47 | 1−T |
| 53 | 1+T |
| 59 | 1−T |
| 61 | 1−T |
| 67 | 1+T |
| 71 | 1−T |
| 73 | 1−T |
| 79 | 1−T |
| 89 | 1−T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.7740995421901859192081173228, −21.62679627194695333443342961583, −20.936196562259149381446212084, −20.74151289466099771480197293994, −18.90273586087853229047979049470, −18.29012396191195618004372684357, −17.72401033203860753224937399579, −16.96895508981321198987612945097, −16.13535823918146349277061252392, −15.253576697845536504656788894282, −14.14181886733345952946389848413, −13.38429032723916218707511015021, −12.56926844991406536388321506934, −11.51712323384679781054405406486, −10.797592306226484300697869103588, −10.1355262777652321752784913734, −9.1081758417829043482873129001, −7.916504638350049121326854193730, −7.06004599684196330146172488494, −5.75944615737523917020031999341, −5.462077450735719058500255357835, −4.50921627787091457746011965130, −3.02880733763852492788508882948, −1.65096963303009147087346008242, −0.91983156285504112405518249016,
0.91983156285504112405518249016, 1.65096963303009147087346008242, 3.02880733763852492788508882948, 4.50921627787091457746011965130, 5.462077450735719058500255357835, 5.75944615737523917020031999341, 7.06004599684196330146172488494, 7.916504638350049121326854193730, 9.1081758417829043482873129001, 10.1355262777652321752784913734, 10.797592306226484300697869103588, 11.51712323384679781054405406486, 12.56926844991406536388321506934, 13.38429032723916218707511015021, 14.14181886733345952946389848413, 15.253576697845536504656788894282, 16.13535823918146349277061252392, 16.96895508981321198987612945097, 17.72401033203860753224937399579, 18.29012396191195618004372684357, 18.90273586087853229047979049470, 20.74151289466099771480197293994, 20.936196562259149381446212084, 21.62679627194695333443342961583, 22.7740995421901859192081173228