L(s) = 1 | + (0.817 + 0.575i)3-s + (−0.973 − 0.227i)5-s + (−0.720 − 0.693i)7-s + (0.338 + 0.941i)9-s + (−0.665 + 0.746i)11-s + (0.953 + 0.301i)13-s + (−0.665 − 0.746i)15-s + (0.606 − 0.795i)17-s + (0.543 − 0.839i)19-s + (−0.190 − 0.981i)21-s + (0.859 − 0.511i)23-s + (0.896 + 0.443i)25-s + (−0.264 + 0.964i)27-s + (0.409 + 0.912i)29-s + (−0.477 + 0.878i)31-s + ⋯ |
L(s) = 1 | + (0.817 + 0.575i)3-s + (−0.973 − 0.227i)5-s + (−0.720 − 0.693i)7-s + (0.338 + 0.941i)9-s + (−0.665 + 0.746i)11-s + (0.953 + 0.301i)13-s + (−0.665 − 0.746i)15-s + (0.606 − 0.795i)17-s + (0.543 − 0.839i)19-s + (−0.190 − 0.981i)21-s + (0.859 − 0.511i)23-s + (0.896 + 0.443i)25-s + (−0.264 + 0.964i)27-s + (0.409 + 0.912i)29-s + (−0.477 + 0.878i)31-s + ⋯ |
Λ(s)=(=(664s/2ΓR(s)L(s)(0.701+0.713i)Λ(1−s)
Λ(s)=(=(664s/2ΓR(s)L(s)(0.701+0.713i)Λ(1−s)
Degree: |
1 |
Conductor: |
664
= 23⋅83
|
Sign: |
0.701+0.713i
|
Analytic conductor: |
3.08360 |
Root analytic conductor: |
3.08360 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ664(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 664, (0: ), 0.701+0.713i)
|
Particular Values
L(21) |
≈ |
1.342746876+0.5628013016i |
L(21) |
≈ |
1.342746876+0.5628013016i |
L(1) |
≈ |
1.132505642+0.2171023585i |
L(1) |
≈ |
1.132505642+0.2171023585i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 83 | 1 |
good | 3 | 1+(0.817+0.575i)T |
| 5 | 1+(−0.973−0.227i)T |
| 7 | 1+(−0.720−0.693i)T |
| 11 | 1+(−0.665+0.746i)T |
| 13 | 1+(0.953+0.301i)T |
| 17 | 1+(0.606−0.795i)T |
| 19 | 1+(0.543−0.839i)T |
| 23 | 1+(0.859−0.511i)T |
| 29 | 1+(0.409+0.912i)T |
| 31 | 1+(−0.477+0.878i)T |
| 37 | 1+(−0.338+0.941i)T |
| 41 | 1+(−0.771−0.636i)T |
| 43 | 1+(0.264+0.964i)T |
| 47 | 1+(0.988−0.152i)T |
| 53 | 1+(0.988+0.152i)T |
| 59 | 1+(−0.114+0.993i)T |
| 61 | 1+(−0.0383+0.999i)T |
| 67 | 1+(0.927+0.373i)T |
| 71 | 1+(0.720−0.693i)T |
| 73 | 1+(−0.896+0.443i)T |
| 79 | 1+(0.190−0.981i)T |
| 89 | 1+(0.997−0.0765i)T |
| 97 | 1+(0.997+0.0765i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.033388064834274304508339304206, −21.79230860976569131703288932253, −20.92995871009456466487743962804, −20.16441897666196387675525853932, −19.10714899324906352956060710067, −18.88893676184646632665985550475, −18.22379479478792657036323567189, −16.81218480680909125215183926120, −15.70255158598990499243021105794, −15.44175556009411760054496105327, −14.4066444875237693255786898294, −13.43554466899645256279685688944, −12.72317072158842486922270437421, −11.9667829519644686479807470283, −10.98326044282360331920370789860, −9.903361143427290331946044662707, −8.799036972205050480624763703177, −8.17328818561573638260030238069, −7.46618018259297158436062163321, −6.3278443345139137532404473243, −5.535740360059333413972463190, −3.66579321744007151170266617867, −3.43386976066447729319182761746, −2.30016222986481637561213688316, −0.8076899765169809588799925825,
1.09776601807613288762541739461, 2.833208217284892684282414981994, 3.43787759883869431959566656558, 4.43568163582495583407343537322, 5.15905267207824472007179062562, 6.987905197460742269989704580695, 7.382646253489651779471132383477, 8.546064719693625906753956905807, 9.193651947695783415169873551063, 10.26518453871446541976334030922, 10.88708068117042629350150515693, 12.06374120821353562408879593208, 13.061248658400515139339736741649, 13.70725753918080189953149816697, 14.71437081650746580015264731298, 15.63669658331393560816090296203, 16.07523781994191328219262054476, 16.78207256144683757483945863288, 18.22059863561722345765352664605, 18.98323440476213017336790542839, 19.83932312941541837537275073769, 20.401675368082220470462790816470, 20.94828421206284922344624807846, 22.130021343059734014109115187910, 23.04311855361144210729078119919