Properties

Label 1-664-664.587-r0-0-0
Degree 11
Conductor 664664
Sign 0.701+0.713i0.701 + 0.713i
Analytic cond. 3.083603.08360
Root an. cond. 3.083603.08360
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.817 + 0.575i)3-s + (−0.973 − 0.227i)5-s + (−0.720 − 0.693i)7-s + (0.338 + 0.941i)9-s + (−0.665 + 0.746i)11-s + (0.953 + 0.301i)13-s + (−0.665 − 0.746i)15-s + (0.606 − 0.795i)17-s + (0.543 − 0.839i)19-s + (−0.190 − 0.981i)21-s + (0.859 − 0.511i)23-s + (0.896 + 0.443i)25-s + (−0.264 + 0.964i)27-s + (0.409 + 0.912i)29-s + (−0.477 + 0.878i)31-s + ⋯
L(s)  = 1  + (0.817 + 0.575i)3-s + (−0.973 − 0.227i)5-s + (−0.720 − 0.693i)7-s + (0.338 + 0.941i)9-s + (−0.665 + 0.746i)11-s + (0.953 + 0.301i)13-s + (−0.665 − 0.746i)15-s + (0.606 − 0.795i)17-s + (0.543 − 0.839i)19-s + (−0.190 − 0.981i)21-s + (0.859 − 0.511i)23-s + (0.896 + 0.443i)25-s + (−0.264 + 0.964i)27-s + (0.409 + 0.912i)29-s + (−0.477 + 0.878i)31-s + ⋯

Functional equation

Λ(s)=(664s/2ΓR(s)L(s)=((0.701+0.713i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.713i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(664s/2ΓR(s)L(s)=((0.701+0.713i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.713i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 664664    =    23832^{3} \cdot 83
Sign: 0.701+0.713i0.701 + 0.713i
Analytic conductor: 3.083603.08360
Root analytic conductor: 3.083603.08360
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ664(587,)\chi_{664} (587, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 664, (0: ), 0.701+0.713i)(1,\ 664,\ (0:\ ),\ 0.701 + 0.713i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.342746876+0.5628013016i1.342746876 + 0.5628013016i
L(12)L(\frac12) \approx 1.342746876+0.5628013016i1.342746876 + 0.5628013016i
L(1)L(1) \approx 1.132505642+0.2171023585i1.132505642 + 0.2171023585i
L(1)L(1) \approx 1.132505642+0.2171023585i1.132505642 + 0.2171023585i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
83 1 1
good3 1+(0.817+0.575i)T 1 + (0.817 + 0.575i)T
5 1+(0.9730.227i)T 1 + (-0.973 - 0.227i)T
7 1+(0.7200.693i)T 1 + (-0.720 - 0.693i)T
11 1+(0.665+0.746i)T 1 + (-0.665 + 0.746i)T
13 1+(0.953+0.301i)T 1 + (0.953 + 0.301i)T
17 1+(0.6060.795i)T 1 + (0.606 - 0.795i)T
19 1+(0.5430.839i)T 1 + (0.543 - 0.839i)T
23 1+(0.8590.511i)T 1 + (0.859 - 0.511i)T
29 1+(0.409+0.912i)T 1 + (0.409 + 0.912i)T
31 1+(0.477+0.878i)T 1 + (-0.477 + 0.878i)T
37 1+(0.338+0.941i)T 1 + (-0.338 + 0.941i)T
41 1+(0.7710.636i)T 1 + (-0.771 - 0.636i)T
43 1+(0.264+0.964i)T 1 + (0.264 + 0.964i)T
47 1+(0.9880.152i)T 1 + (0.988 - 0.152i)T
53 1+(0.988+0.152i)T 1 + (0.988 + 0.152i)T
59 1+(0.114+0.993i)T 1 + (-0.114 + 0.993i)T
61 1+(0.0383+0.999i)T 1 + (-0.0383 + 0.999i)T
67 1+(0.927+0.373i)T 1 + (0.927 + 0.373i)T
71 1+(0.7200.693i)T 1 + (0.720 - 0.693i)T
73 1+(0.896+0.443i)T 1 + (-0.896 + 0.443i)T
79 1+(0.1900.981i)T 1 + (0.190 - 0.981i)T
89 1+(0.9970.0765i)T 1 + (0.997 - 0.0765i)T
97 1+(0.997+0.0765i)T 1 + (0.997 + 0.0765i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.033388064834274304508339304206, −21.79230860976569131703288932253, −20.92995871009456466487743962804, −20.16441897666196387675525853932, −19.10714899324906352956060710067, −18.88893676184646632665985550475, −18.22379479478792657036323567189, −16.81218480680909125215183926120, −15.70255158598990499243021105794, −15.44175556009411760054496105327, −14.4066444875237693255786898294, −13.43554466899645256279685688944, −12.72317072158842486922270437421, −11.9667829519644686479807470283, −10.98326044282360331920370789860, −9.903361143427290331946044662707, −8.799036972205050480624763703177, −8.17328818561573638260030238069, −7.46618018259297158436062163321, −6.3278443345139137532404473243, −5.535740360059333413972463190, −3.66579321744007151170266617867, −3.43386976066447729319182761746, −2.30016222986481637561213688316, −0.8076899765169809588799925825, 1.09776601807613288762541739461, 2.833208217284892684282414981994, 3.43787759883869431959566656558, 4.43568163582495583407343537322, 5.15905267207824472007179062562, 6.987905197460742269989704580695, 7.382646253489651779471132383477, 8.546064719693625906753956905807, 9.193651947695783415169873551063, 10.26518453871446541976334030922, 10.88708068117042629350150515693, 12.06374120821353562408879593208, 13.061248658400515139339736741649, 13.70725753918080189953149816697, 14.71437081650746580015264731298, 15.63669658331393560816090296203, 16.07523781994191328219262054476, 16.78207256144683757483945863288, 18.22059863561722345765352664605, 18.98323440476213017336790542839, 19.83932312941541837537275073769, 20.401675368082220470462790816470, 20.94828421206284922344624807846, 22.130021343059734014109115187910, 23.04311855361144210729078119919

Graph of the ZZ-function along the critical line