L(s) = 1 | + (−0.469 + 0.882i)2-s + (−0.559 − 0.829i)4-s + (−0.342 − 0.939i)7-s + (0.994 − 0.104i)8-s + (−0.848 + 0.529i)11-s + (0.469 + 0.882i)13-s + (0.990 + 0.139i)14-s + (−0.374 + 0.927i)16-s + (0.406 − 0.913i)17-s + (0.104 + 0.994i)19-s + (−0.0697 − 0.997i)22-s + (−0.788 − 0.615i)23-s − 26-s + (−0.587 + 0.809i)28-s + (−0.719 + 0.694i)29-s + ⋯ |
L(s) = 1 | + (−0.469 + 0.882i)2-s + (−0.559 − 0.829i)4-s + (−0.342 − 0.939i)7-s + (0.994 − 0.104i)8-s + (−0.848 + 0.529i)11-s + (0.469 + 0.882i)13-s + (0.990 + 0.139i)14-s + (−0.374 + 0.927i)16-s + (0.406 − 0.913i)17-s + (0.104 + 0.994i)19-s + (−0.0697 − 0.997i)22-s + (−0.788 − 0.615i)23-s − 26-s + (−0.587 + 0.809i)28-s + (−0.719 + 0.694i)29-s + ⋯ |
Λ(s)=(=(675s/2ΓR(s)L(s)(0.861+0.508i)Λ(1−s)
Λ(s)=(=(675s/2ΓR(s)L(s)(0.861+0.508i)Λ(1−s)
Degree: |
1 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.861+0.508i
|
Analytic conductor: |
3.13468 |
Root analytic conductor: |
3.13468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(302,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 675, (0: ), 0.861+0.508i)
|
Particular Values
L(21) |
≈ |
0.8804193334+0.2403050213i |
L(21) |
≈ |
0.8804193334+0.2403050213i |
L(1) |
≈ |
0.7508168775+0.2118892888i |
L(1) |
≈ |
0.7508168775+0.2118892888i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−0.469+0.882i)T |
| 7 | 1+(−0.342−0.939i)T |
| 11 | 1+(−0.848+0.529i)T |
| 13 | 1+(0.469+0.882i)T |
| 17 | 1+(0.406−0.913i)T |
| 19 | 1+(0.104+0.994i)T |
| 23 | 1+(−0.788−0.615i)T |
| 29 | 1+(−0.719+0.694i)T |
| 31 | 1+(0.961−0.275i)T |
| 37 | 1+(0.743+0.669i)T |
| 41 | 1+(0.882−0.469i)T |
| 43 | 1+(0.642−0.766i)T |
| 47 | 1+(0.275−0.961i)T |
| 53 | 1+(0.587−0.809i)T |
| 59 | 1+(0.848+0.529i)T |
| 61 | 1+(0.0348+0.999i)T |
| 67 | 1+(0.694−0.719i)T |
| 71 | 1+(0.104−0.994i)T |
| 73 | 1+(0.743−0.669i)T |
| 79 | 1+(0.719−0.694i)T |
| 83 | 1+(−0.898+0.438i)T |
| 89 | 1+(0.669+0.743i)T |
| 97 | 1+(0.970−0.241i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.48473299805601344401354533869, −21.56254283163451259329121641745, −21.22537165096542969410771533277, −20.133443584826854375746038152002, −19.37557447637925845525273219984, −18.68338050197169335835340481983, −17.93880534724909680691369386478, −17.25165519074955382013755234445, −15.987869772136604971173860227412, −15.53991539333910140745485538893, −14.22130224931993291230199043471, −13.02529674563971015730701452059, −12.822560883603400056979109379525, −11.62995852091689721468178776931, −10.95180533928793509708051083701, −10.02932479217277993803989879295, −9.236236344713649251022877817168, −8.26173072810605222073687716897, −7.73419557288278817844219452005, −6.11967744668878109288352562755, −5.34034365264499161567200736848, −4.01860571607189903508479927388, −2.98537421249473807726627162425, −2.319992979152201061152045202536, −0.85895130314335339193093774411,
0.76038453361757374079247475227, 2.10705968122783193277985003339, 3.754294560978448491549654335572, 4.617646086206680755185435538954, 5.6703735295256804457724549321, 6.650878807908376686017409598274, 7.41760954366524347799709603112, 8.12867361521034270592103385573, 9.27020564396483281598015153234, 10.06146696642262629049168593704, 10.672058192516090850257781308850, 11.938968261619597635919680649713, 13.136638342964944863972491954455, 13.863424508139250828168980059924, 14.52708785644968166956482412810, 15.611292803947042901992322237492, 16.416595108146872082523966478933, 16.770432928516290198240415228311, 17.99271527184586745924346878725, 18.49675166674659074392936546443, 19.35762887437169594209783145978, 20.378226095940763670363159426628, 20.95199252408038923520517975679, 22.44800983325245484051848621657, 22.95780279304789501452645659621