Properties

Label 1-675-675.302-r0-0-0
Degree 11
Conductor 675675
Sign 0.861+0.508i0.861 + 0.508i
Analytic cond. 3.134683.13468
Root an. cond. 3.134683.13468
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.469 + 0.882i)2-s + (−0.559 − 0.829i)4-s + (−0.342 − 0.939i)7-s + (0.994 − 0.104i)8-s + (−0.848 + 0.529i)11-s + (0.469 + 0.882i)13-s + (0.990 + 0.139i)14-s + (−0.374 + 0.927i)16-s + (0.406 − 0.913i)17-s + (0.104 + 0.994i)19-s + (−0.0697 − 0.997i)22-s + (−0.788 − 0.615i)23-s − 26-s + (−0.587 + 0.809i)28-s + (−0.719 + 0.694i)29-s + ⋯
L(s)  = 1  + (−0.469 + 0.882i)2-s + (−0.559 − 0.829i)4-s + (−0.342 − 0.939i)7-s + (0.994 − 0.104i)8-s + (−0.848 + 0.529i)11-s + (0.469 + 0.882i)13-s + (0.990 + 0.139i)14-s + (−0.374 + 0.927i)16-s + (0.406 − 0.913i)17-s + (0.104 + 0.994i)19-s + (−0.0697 − 0.997i)22-s + (−0.788 − 0.615i)23-s − 26-s + (−0.587 + 0.809i)28-s + (−0.719 + 0.694i)29-s + ⋯

Functional equation

Λ(s)=(675s/2ΓR(s)L(s)=((0.861+0.508i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(675s/2ΓR(s)L(s)=((0.861+0.508i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 675675    =    33523^{3} \cdot 5^{2}
Sign: 0.861+0.508i0.861 + 0.508i
Analytic conductor: 3.134683.13468
Root analytic conductor: 3.134683.13468
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ675(302,)\chi_{675} (302, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 675, (0: ), 0.861+0.508i)(1,\ 675,\ (0:\ ),\ 0.861 + 0.508i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.8804193334+0.2403050213i0.8804193334 + 0.2403050213i
L(12)L(\frac12) \approx 0.8804193334+0.2403050213i0.8804193334 + 0.2403050213i
L(1)L(1) \approx 0.7508168775+0.2118892888i0.7508168775 + 0.2118892888i
L(1)L(1) \approx 0.7508168775+0.2118892888i0.7508168775 + 0.2118892888i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
good2 1+(0.469+0.882i)T 1 + (-0.469 + 0.882i)T
7 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
11 1+(0.848+0.529i)T 1 + (-0.848 + 0.529i)T
13 1+(0.469+0.882i)T 1 + (0.469 + 0.882i)T
17 1+(0.4060.913i)T 1 + (0.406 - 0.913i)T
19 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
23 1+(0.7880.615i)T 1 + (-0.788 - 0.615i)T
29 1+(0.719+0.694i)T 1 + (-0.719 + 0.694i)T
31 1+(0.9610.275i)T 1 + (0.961 - 0.275i)T
37 1+(0.743+0.669i)T 1 + (0.743 + 0.669i)T
41 1+(0.8820.469i)T 1 + (0.882 - 0.469i)T
43 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
47 1+(0.2750.961i)T 1 + (0.275 - 0.961i)T
53 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
59 1+(0.848+0.529i)T 1 + (0.848 + 0.529i)T
61 1+(0.0348+0.999i)T 1 + (0.0348 + 0.999i)T
67 1+(0.6940.719i)T 1 + (0.694 - 0.719i)T
71 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
73 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
79 1+(0.7190.694i)T 1 + (0.719 - 0.694i)T
83 1+(0.898+0.438i)T 1 + (-0.898 + 0.438i)T
89 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
97 1+(0.9700.241i)T 1 + (0.970 - 0.241i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.48473299805601344401354533869, −21.56254283163451259329121641745, −21.22537165096542969410771533277, −20.133443584826854375746038152002, −19.37557447637925845525273219984, −18.68338050197169335835340481983, −17.93880534724909680691369386478, −17.25165519074955382013755234445, −15.987869772136604971173860227412, −15.53991539333910140745485538893, −14.22130224931993291230199043471, −13.02529674563971015730701452059, −12.822560883603400056979109379525, −11.62995852091689721468178776931, −10.95180533928793509708051083701, −10.02932479217277993803989879295, −9.236236344713649251022877817168, −8.26173072810605222073687716897, −7.73419557288278817844219452005, −6.11967744668878109288352562755, −5.34034365264499161567200736848, −4.01860571607189903508479927388, −2.98537421249473807726627162425, −2.319992979152201061152045202536, −0.85895130314335339193093774411, 0.76038453361757374079247475227, 2.10705968122783193277985003339, 3.754294560978448491549654335572, 4.617646086206680755185435538954, 5.6703735295256804457724549321, 6.650878807908376686017409598274, 7.41760954366524347799709603112, 8.12867361521034270592103385573, 9.27020564396483281598015153234, 10.06146696642262629049168593704, 10.672058192516090850257781308850, 11.938968261619597635919680649713, 13.136638342964944863972491954455, 13.863424508139250828168980059924, 14.52708785644968166956482412810, 15.611292803947042901992322237492, 16.416595108146872082523966478933, 16.770432928516290198240415228311, 17.99271527184586745924346878725, 18.49675166674659074392936546443, 19.35762887437169594209783145978, 20.378226095940763670363159426628, 20.95199252408038923520517975679, 22.44800983325245484051848621657, 22.95780279304789501452645659621

Graph of the ZZ-function along the critical line