L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.913 + 0.406i)5-s + (−0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 + 0.406i)13-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (−0.5 + 0.866i)23-s + (0.669 − 0.743i)25-s + (0.978 − 0.207i)26-s + (−0.669 − 0.743i)29-s + (0.809 − 0.587i)31-s − 32-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.913 + 0.406i)5-s + (−0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 + 0.406i)13-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (−0.5 + 0.866i)23-s + (0.669 − 0.743i)25-s + (0.978 − 0.207i)26-s + (−0.669 − 0.743i)29-s + (0.809 − 0.587i)31-s − 32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s)L(s)(−0.0349−0.999i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s)L(s)(−0.0349−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.0349−0.999i
|
Analytic conductor: |
3.21827 |
Root analytic conductor: |
3.21827 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(292,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (0: ), −0.0349−0.999i)
|
Particular Values
L(21) |
≈ |
1.333620041−1.381066091i |
L(21) |
≈ |
1.333620041−1.381066091i |
L(1) |
≈ |
1.321288892−0.6391446122i |
L(1) |
≈ |
1.321288892−0.6391446122i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.809−0.587i)T |
| 5 | 1+(−0.913+0.406i)T |
| 13 | 1+(0.913+0.406i)T |
| 17 | 1+(0.913−0.406i)T |
| 19 | 1+(0.669−0.743i)T |
| 23 | 1+(−0.5+0.866i)T |
| 29 | 1+(−0.669−0.743i)T |
| 31 | 1+(0.809−0.587i)T |
| 37 | 1+(−0.978+0.207i)T |
| 41 | 1+(0.669−0.743i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(−0.309−0.951i)T |
| 53 | 1+(−0.104−0.994i)T |
| 59 | 1+(−0.309+0.951i)T |
| 61 | 1+(−0.809−0.587i)T |
| 67 | 1+T |
| 71 | 1+(−0.809−0.587i)T |
| 73 | 1+(0.669+0.743i)T |
| 79 | 1+(0.809−0.587i)T |
| 83 | 1+(0.913−0.406i)T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+(0.104+0.994i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.96997197282954982567720708044, −22.4036091706829497600788381037, −21.172726264278814484604062061931, −20.660064400817634591328504727730, −19.8584177493415661021103724080, −18.77522185874926662275587660751, −17.88774181083492237293387089418, −16.76798871667098134500575493713, −16.16821179979147612500264649001, −15.57743506641039397899542592308, −14.60210285508970578836202239337, −13.94836864973146023034898195993, −12.74322367034918505068898943504, −12.36530328075391900602673252205, −11.41813959233918041861454940364, −10.52017507874155970795046837866, −9.06027470257992365557931549474, −8.088358029280490225824415711238, −7.68698616245083974417023206271, −6.457860559316228953998076186567, −5.60956810529051368670959969458, −4.647375055025407916441793296021, −3.71869054352341909355100719035, −3.0516303986770163565192585489, −1.32535599225562719408507076527,
0.79895699051273178414319217974, 2.16386068309688659875438303791, 3.3606911689550873018614857500, 3.86118084205332461746554026868, 4.982860642014155784045117098588, 5.95433181701830354703179891950, 6.96788065978835494082254866171, 7.817308808472281516110596357884, 9.09892462811137710112537337741, 10.06109982767050835981025150258, 11.02751041752560795710321875059, 11.675228883231125008405674656967, 12.24019315027401702060191187934, 13.51794064452418114084658659792, 13.95732212506396022941860435278, 15.06946599760379605849537916057, 15.65700115203664013590274059994, 16.37606205775171942380372685574, 17.79089948978746330267207695306, 18.81768841243046484295411779532, 19.1730553904871353442986118750, 20.185010831443825928221342129792, 20.82360253611088573545840867603, 21.67666823823065024420769151267, 22.652388862179421669345577649384