L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.913 + 0.406i)5-s + (−0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 + 0.406i)13-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (−0.5 + 0.866i)23-s + (0.669 − 0.743i)25-s + (0.978 − 0.207i)26-s + (−0.669 − 0.743i)29-s + (0.809 − 0.587i)31-s − 32-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.913 + 0.406i)5-s + (−0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 + 0.406i)13-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (−0.5 + 0.866i)23-s + (0.669 − 0.743i)25-s + (0.978 − 0.207i)26-s + (−0.669 − 0.743i)29-s + (0.809 − 0.587i)31-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0349 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0349 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.333620041 - 1.381066091i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.333620041 - 1.381066091i\) |
\(L(1)\) |
\(\approx\) |
\(1.321288892 - 0.6391446122i\) |
\(L(1)\) |
\(\approx\) |
\(1.321288892 - 0.6391446122i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.913 + 0.406i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (0.913 - 0.406i)T \) |
| 19 | \( 1 + (0.669 - 0.743i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.669 - 0.743i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.978 + 0.207i)T \) |
| 41 | \( 1 + (0.669 - 0.743i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.104 - 0.994i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.669 + 0.743i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.913 - 0.406i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.104 + 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.96997197282954982567720708044, −22.4036091706829497600788381037, −21.172726264278814484604062061931, −20.660064400817634591328504727730, −19.8584177493415661021103724080, −18.77522185874926662275587660751, −17.88774181083492237293387089418, −16.76798871667098134500575493713, −16.16821179979147612500264649001, −15.57743506641039397899542592308, −14.60210285508970578836202239337, −13.94836864973146023034898195993, −12.74322367034918505068898943504, −12.36530328075391900602673252205, −11.41813959233918041861454940364, −10.52017507874155970795046837866, −9.06027470257992365557931549474, −8.088358029280490225824415711238, −7.68698616245083974417023206271, −6.457860559316228953998076186567, −5.60956810529051368670959969458, −4.647375055025407916441793296021, −3.71869054352341909355100719035, −3.0516303986770163565192585489, −1.32535599225562719408507076527,
0.79895699051273178414319217974, 2.16386068309688659875438303791, 3.3606911689550873018614857500, 3.86118084205332461746554026868, 4.982860642014155784045117098588, 5.95433181701830354703179891950, 6.96788065978835494082254866171, 7.817308808472281516110596357884, 9.09892462811137710112537337741, 10.06109982767050835981025150258, 11.02751041752560795710321875059, 11.675228883231125008405674656967, 12.24019315027401702060191187934, 13.51794064452418114084658659792, 13.95732212506396022941860435278, 15.06946599760379605849537916057, 15.65700115203664013590274059994, 16.37606205775171942380372685574, 17.79089948978746330267207695306, 18.81768841243046484295411779532, 19.1730553904871353442986118750, 20.185010831443825928221342129792, 20.82360253611088573545840867603, 21.67666823823065024420769151267, 22.652388862179421669345577649384