L(s) = 1 | + (−0.104 + 0.994i)2-s + (−0.978 − 0.207i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 − 0.866i)10-s + (−0.104 + 0.994i)13-s + (0.913 + 0.406i)16-s + (−0.913 − 0.406i)17-s + (0.669 + 0.743i)19-s + (0.913 − 0.406i)20-s − 23-s + (0.309 − 0.951i)25-s + (−0.978 − 0.207i)26-s + (−0.978 − 0.207i)29-s + (−0.913 + 0.406i)31-s + (−0.5 + 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.104 + 0.994i)2-s + (−0.978 − 0.207i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 − 0.866i)10-s + (−0.104 + 0.994i)13-s + (0.913 + 0.406i)16-s + (−0.913 − 0.406i)17-s + (0.669 + 0.743i)19-s + (0.913 − 0.406i)20-s − 23-s + (0.309 − 0.951i)25-s + (−0.978 − 0.207i)26-s + (−0.978 − 0.207i)29-s + (−0.913 + 0.406i)31-s + (−0.5 + 0.866i)32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s+1)L(s)(0.927+0.374i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s+1)L(s)(0.927+0.374i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.927+0.374i
|
Analytic conductor: |
74.4731 |
Root analytic conductor: |
74.4731 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(563,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (1: ), 0.927+0.374i)
|
Particular Values
L(21) |
≈ |
0.6194734808+0.1204278945i |
L(21) |
≈ |
0.6194734808+0.1204278945i |
L(1) |
≈ |
0.5648890763+0.3595325358i |
L(1) |
≈ |
0.5648890763+0.3595325358i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.104+0.994i)T |
| 5 | 1+(−0.809+0.587i)T |
| 13 | 1+(−0.104+0.994i)T |
| 17 | 1+(−0.913−0.406i)T |
| 19 | 1+(0.669+0.743i)T |
| 23 | 1−T |
| 29 | 1+(−0.978−0.207i)T |
| 31 | 1+(−0.913+0.406i)T |
| 37 | 1+(−0.978−0.207i)T |
| 41 | 1+(0.978−0.207i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(−0.978+0.207i)T |
| 53 | 1+(0.104−0.994i)T |
| 59 | 1+(−0.978−0.207i)T |
| 61 | 1+(0.913+0.406i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(0.809−0.587i)T |
| 73 | 1+(0.669−0.743i)T |
| 79 | 1+(0.104−0.994i)T |
| 83 | 1+(0.104+0.994i)T |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(−0.913+0.406i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.39178161202903480487029474411, −21.5713387280558948666720945420, −20.50121519579315409581603603143, −20.01009587642773277181007708811, −19.49985670856876096488544434169, −18.39825451566595407106700663019, −17.72580013681063335844518004718, −16.842371526476374156377461273715, −15.8192068738777668580697750796, −15.03080967251451753117193861168, −13.90289524606391750559312636670, −12.917346851776724875328855124564, −12.51717989965578993545387840849, −11.40811703645581857586963791420, −10.94187879394615247605168855905, −9.783106636803038363897747170, −8.9731513294663778007745819012, −8.13204138412962034983862850661, −7.37039545756577733990286795150, −5.73437842692206677505443643168, −4.803235776200112595542704047541, −3.94236738675638819443986213457, −3.06507672400665985787057273233, −1.84344292731751150479591124462, −0.63709967114583135469204994203,
0.25223876837190570275740490872, 1.9437500824212572848281594021, 3.559515717498308237716549575584, 4.20906691386139500665752129136, 5.31972835536866836622983998059, 6.40178956487103294022148633375, 7.15968846268368004031669005024, 7.83340579951311592781842185721, 8.83925346435263836162895824094, 9.65301867562708336132482237956, 10.72975125033870469244860536850, 11.67553624274738657802060713879, 12.584334642178556163312831083260, 13.80120291189280919788986448109, 14.3362931831381459859336008533, 15.177173762705939079826959058804, 16.05430240261731167363866711951, 16.45304042862562713365345063920, 17.69366267636794959437445788845, 18.327678681335776752181025212906, 19.091660291153192786411274264, 19.81388683226739065631726320186, 20.96150942518565460440078310081, 22.3206294182717058396209474292, 22.38764911109133205020578441825