L(s) = 1 | + 3-s + (0.5 − 0.866i)5-s + 9-s + 11-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + 19-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + 33-s + (0.5 + 0.866i)37-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + 3-s + (0.5 − 0.866i)5-s + 9-s + 11-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + 19-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + 33-s + (0.5 + 0.866i)37-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(4.132345428 - 0.6642529918i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.132345428 - 0.6642529918i\) |
\(L(1)\) |
\(\approx\) |
\(1.895518411 - 0.2008129936i\) |
\(L(1)\) |
\(\approx\) |
\(1.895518411 - 0.2008129936i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.29054443068276131506515810303, −21.5996038260292367818951668415, −20.64785344708540052096257130662, −19.99056503030891244246917512134, −19.135296837828864162646719156769, −18.39813512901564611799292693184, −17.73737393237501344792804530933, −16.598510123727063453799459328391, −15.64937374968051452466225738874, −14.795202990683810995534331573089, −14.14090959391754946935549756168, −13.637087599231907276512552220959, −12.57290759205840898212248227452, −11.49693980345364036047443486610, −10.5897055922249629831397635472, −9.54769348370674301662890789002, −9.15549986306049931196503371137, −7.96406598803877596587686421922, −7.00828189134731875011306096074, −6.453297301305768878679401004571, −5.050807308491987311024771749266, −3.91319835375859133969876751498, −2.99810407164146274450221646152, −2.234811168482889098095890390251, −1.037949062367644411465999224478,
1.073761128736046900062890964389, 1.757269777851103122339865911511, 3.00908017389289188865414666634, 4.02653210235416116933276302246, 4.86935570857464899319884692278, 6.06944222243564519116888097102, 7.0468174631225349582505778965, 8.15444222517794560615608391887, 8.83447631354467650587895888680, 9.535245478898973764357925547597, 10.279332324869489432579029960799, 11.70068388754443883784275281309, 12.441430971130005835163371146549, 13.60076420591438629906994450092, 13.70921917518267433404055628950, 14.95663034169509286613975279628, 15.58535702924486723302017801597, 16.643665860659053857046184896834, 17.342214674499793556008204055, 18.25781992986216835878091205932, 19.3386741327195409785050178888, 19.93020992448212295485726825307, 20.50695797975080073600860404412, 21.56355974317543344113636608530, 21.85690148475645920907005172458