L(s) = 1 | + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s − i·23-s − i·27-s − 29-s − 31-s + (−0.866 − 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s − i·23-s − i·27-s − 29-s − 31-s + (−0.866 − 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01151412322 + 0.1963851233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01151412322 + 0.1963851233i\) |
\(L(1)\) |
\(\approx\) |
\(0.8490367747 + 0.1535860354i\) |
\(L(1)\) |
\(\approx\) |
\(0.8490367747 + 0.1535860354i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.86452892316329532307821919669, −21.36145626386489319860627753913, −20.174214223231859823446306992416, −19.71129271489440812209919841470, −18.8495433583972090584376534766, −18.28014081327289386524652733618, −17.32212033547222267362903637667, −16.17264574220864544437975052671, −15.38604183811914267377364596520, −14.83099165879708378202710041929, −13.56895947341130844339894415325, −13.17670890002933113545265255384, −12.35723591461101785301639657242, −11.39487375123030814301171619322, −10.16769683651151574009566920590, −9.254558359469546483526590031071, −8.8119160189546950614529046467, −7.48414450243219645100095835478, −7.03985773837980137437590224203, −5.91022620340710836326111056601, −4.78847956900267905669971827331, −3.5616019698465884672063464112, −2.617525868602031164105940353668, −1.982397628204749922595954333993, −0.0719408017556741167665966440,
1.984768424479447829842371118539, 2.85208448350356401480029990290, 3.7817896092054458812051818133, 4.65594077074697915318063342813, 5.76323011051085963025925740215, 6.98699018435170392951186350149, 7.794495166807965459257762301497, 8.635402242842806334208065614140, 9.63057258130085999336899649159, 10.32579356476281678997245856162, 10.90076076627341590451659924315, 12.61871664406917246381534342499, 12.95611560719984461743558131428, 13.89905871417217446732356828144, 14.86638515607274888083313000411, 15.4148274335999798127592284454, 16.39645556716158710952318018132, 16.93929902121253629914953995872, 18.25214645237807438775295065351, 19.00294519319450975780427732024, 19.85166166472897682356502646411, 20.365358773470599746939957430119, 21.18307332298047997930754482975, 22.13777002223487393273180931710, 22.6727377300771958867739020538