Properties

Label 1-740-740.47-r0-0-0
Degree 11
Conductor 740740
Sign 0.339+0.940i0.339 + 0.940i
Analytic cond. 3.436543.43654
Root an. cond. 3.436543.43654
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s i·23-s i·27-s − 29-s − 31-s + (0.866 + 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s i·23-s i·27-s − 29-s − 31-s + (0.866 + 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯

Functional equation

Λ(s)=(740s/2ΓR(s)L(s)=((0.339+0.940i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.339 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(740s/2ΓR(s)L(s)=((0.339+0.940i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.339 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 740740    =    225372^{2} \cdot 5 \cdot 37
Sign: 0.339+0.940i0.339 + 0.940i
Analytic conductor: 3.436543.43654
Root analytic conductor: 3.436543.43654
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ740(47,)\chi_{740} (47, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 740, (0: ), 0.339+0.940i)(1,\ 740,\ (0:\ ),\ 0.339 + 0.940i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.7459037642+0.5237031186i0.7459037642 + 0.5237031186i
L(12)L(\frac12) \approx 0.7459037642+0.5237031186i0.7459037642 + 0.5237031186i
L(1)L(1) \approx 0.8273529721+0.08329726345i0.8273529721 + 0.08329726345i
L(1)L(1) \approx 0.8273529721+0.08329726345i0.8273529721 + 0.08329726345i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
37 1 1
good3 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1T 1 - T
13 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
19 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
23 1iT 1 - iT
29 1T 1 - T
31 1T 1 - T
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
43 1iT 1 - iT
47 1iT 1 - iT
53 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
71 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
73 1iT 1 - iT
79 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
83 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+iT 1 + iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.335129885926657135892985738594, −21.472592056797063698711103829544, −20.76055274676405034819013671613, −20.31114175618217494201308754968, −18.773709647677372100436592399759, −18.23078818259869530642320543421, −17.34801697225262640759550767452, −16.76551919783967131085054453678, −15.801943290396228423129313606328, −15.13990393276006633204453193809, −14.234700207353798804826489335087, −13.08418119169007199054498689764, −12.449683975321565119259173318066, −11.19076853453209915674633761509, −10.80951282597592369972219732484, −10.12289285225908264574689505963, −8.8768168978959276681005380176, −7.95564600565462521041618403498, −7.02368050494904989109398799494, −5.86374332789876007704386671598, −5.19362795091731012014049308019, −4.29366168719521681247044381473, −3.3403884971607796779568299387, −1.80788519274572333093428664590, −0.51275103133610689132904736194, 1.32887564459168370729566208941, 2.09716479624500992401870282667, 3.56684459556852822755316784018, 4.88138221422823514649412224443, 5.51896405605712612376999172572, 6.295666053799759068640613069991, 7.598963557138463151677490585797, 7.99584448277571387443680112684, 9.24378488620271841838231911602, 10.38476074272971842272507440071, 11.1841997005588756939413669782, 11.76680498289168964699340741926, 12.69665866912509040265265998828, 13.45558779211371948108246107724, 14.40591287160115506695216656681, 15.39594725775975142976029116013, 16.29205731552923601334001233609, 16.93051748974515463633385692800, 18.03652319785546932469836620161, 18.43414379587772527813784366529, 19.02607570648451997837527907501, 20.39590294517377800411907608730, 21.22368453378107454012127962052, 21.68999250129296700638831675786, 22.88077840849102870813811286774

Graph of the ZZ-function along the critical line