L(s) = 1 | + (−0.866 − 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s − i·23-s − i·27-s − 29-s − 31-s + (0.866 + 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)21-s − i·23-s − i·27-s − 29-s − 31-s + (0.866 + 0.5i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.339 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.339 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7459037642 + 0.5237031186i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7459037642 + 0.5237031186i\) |
\(L(1)\) |
\(\approx\) |
\(0.8273529721 + 0.08329726345i\) |
\(L(1)\) |
\(\approx\) |
\(0.8273529721 + 0.08329726345i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.335129885926657135892985738594, −21.472592056797063698711103829544, −20.76055274676405034819013671613, −20.31114175618217494201308754968, −18.773709647677372100436592399759, −18.23078818259869530642320543421, −17.34801697225262640759550767452, −16.76551919783967131085054453678, −15.801943290396228423129313606328, −15.13990393276006633204453193809, −14.234700207353798804826489335087, −13.08418119169007199054498689764, −12.449683975321565119259173318066, −11.19076853453209915674633761509, −10.80951282597592369972219732484, −10.12289285225908264574689505963, −8.8768168978959276681005380176, −7.95564600565462521041618403498, −7.02368050494904989109398799494, −5.86374332789876007704386671598, −5.19362795091731012014049308019, −4.29366168719521681247044381473, −3.3403884971607796779568299387, −1.80788519274572333093428664590, −0.51275103133610689132904736194,
1.32887564459168370729566208941, 2.09716479624500992401870282667, 3.56684459556852822755316784018, 4.88138221422823514649412224443, 5.51896405605712612376999172572, 6.295666053799759068640613069991, 7.598963557138463151677490585797, 7.99584448277571387443680112684, 9.24378488620271841838231911602, 10.38476074272971842272507440071, 11.1841997005588756939413669782, 11.76680498289168964699340741926, 12.69665866912509040265265998828, 13.45558779211371948108246107724, 14.40591287160115506695216656681, 15.39594725775975142976029116013, 16.29205731552923601334001233609, 16.93051748974515463633385692800, 18.03652319785546932469836620161, 18.43414379587772527813784366529, 19.02607570648451997837527907501, 20.39590294517377800411907608730, 21.22368453378107454012127962052, 21.68999250129296700638831675786, 22.88077840849102870813811286774