Properties

Label 1-760-760.293-r0-0-0
Degree 11
Conductor 760760
Sign 0.8300.557i-0.830 - 0.557i
Analytic cond. 3.529423.52942
Root an. cond. 3.529423.52942
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)3-s i·7-s + (0.5 − 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s − 31-s + (−0.866 + 0.5i)33-s i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)3-s i·7-s + (0.5 − 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s − 31-s + (−0.866 + 0.5i)33-s i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s)L(s)=((0.8300.557i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.830 - 0.557i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s)L(s)=((0.8300.557i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.830 - 0.557i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.8300.557i-0.830 - 0.557i
Analytic conductor: 3.529423.52942
Root analytic conductor: 3.529423.52942
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(293,)\chi_{760} (293, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (0: ), 0.8300.557i)(1,\ 760,\ (0:\ ),\ -0.830 - 0.557i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.34477757431.131553059i0.3447775743 - 1.131553059i
L(12)L(\frac12) \approx 0.34477757431.131553059i0.3447775743 - 1.131553059i
L(1)L(1) \approx 0.99490103680.4942926104i0.9949010368 - 0.4942926104i
L(1)L(1) \approx 0.99490103680.4942926104i0.9949010368 - 0.4942926104i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
7 1iT 1 - iT
11 1T 1 - T
13 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
17 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
23 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
29 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
31 1T 1 - T
37 1iT 1 - iT
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
47 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
53 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
59 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
71 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
73 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1iT 1 - iT
89 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
97 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.33026406813193350872679287343, −21.88649963534907843751053324852, −21.20111218062436044961807818264, −20.28089658690331054152747110589, −19.664355224529053762315423485071, −18.67075512521047513189908557610, −18.18134655919387196170869888147, −16.96388798671680956404489160471, −15.82271475813851313468728452465, −15.59108092426760238580922894870, −14.60678693315063616080668286628, −13.87349626588912172347864954361, −12.95504916027566889200478802204, −12.105460809180730700541661582495, −11.06768868378479262480274794290, −10.09331190486967818938712577580, −9.32672405091380521601705058745, −8.6120130129740262426250508822, −7.753074336960502213704807429319, −6.8056109619202765545392292371, −5.38797667475817071553136082679, −4.81544482209350207574594191497, −3.61001932513694091777220803746, −2.53550090337567821506350258435, −2.01864929887238291002118664353, 0.4426096937966065867470371425, 1.92210209858526315697390143000, 2.74115415256602762934962404877, 3.84761255571361043606673405025, 4.70700516187075998071537101278, 6.06239057542802206819299610252, 7.08097944808003213779330645155, 7.77778036308314507684515008876, 8.41358905253800485343073147567, 9.65005082657938156062585920193, 10.28300640717824428395501217275, 11.250257006428188018083453458100, 12.60909156262785178388060126564, 12.994026270676652348680747946661, 13.89971639010086249679288467535, 14.60124093547784427349108995770, 15.46070033574133736287362914803, 16.31811405160076797243116189877, 17.49444551831663694259469893067, 17.97836700605118400041632794966, 18.99707119007710548553932069257, 19.85540133246853261839494598808, 20.22788256779962517986287911710, 21.109006203687137831355527171586, 22.003762379462338686189156182844

Graph of the ZZ-function along the critical line