L(s) = 1 | + (0.866 − 0.5i)3-s − i·7-s + (0.5 − 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − 31-s + (−0.866 + 0.5i)33-s − i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s − i·7-s + (0.5 − 0.866i)9-s − 11-s + (−0.866 − 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − 31-s + (−0.866 + 0.5i)33-s − i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s)L(s)(−0.830−0.557i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s)L(s)(−0.830−0.557i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
−0.830−0.557i
|
Analytic conductor: |
3.52942 |
Root analytic conductor: |
3.52942 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (0: ), −0.830−0.557i)
|
Particular Values
L(21) |
≈ |
0.3447775743−1.131553059i |
L(21) |
≈ |
0.3447775743−1.131553059i |
L(1) |
≈ |
0.9949010368−0.4942926104i |
L(1) |
≈ |
0.9949010368−0.4942926104i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.866−0.5i)T |
| 7 | 1−iT |
| 11 | 1−T |
| 13 | 1+(−0.866−0.5i)T |
| 17 | 1+(−0.866+0.5i)T |
| 23 | 1+(−0.866−0.5i)T |
| 29 | 1+(0.5−0.866i)T |
| 31 | 1−T |
| 37 | 1−iT |
| 41 | 1+(0.5+0.866i)T |
| 43 | 1+(−0.866+0.5i)T |
| 47 | 1+(0.866+0.5i)T |
| 53 | 1+(−0.866−0.5i)T |
| 59 | 1+(0.5+0.866i)T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(0.866+0.5i)T |
| 71 | 1+(0.5+0.866i)T |
| 73 | 1+(0.866−0.5i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1−iT |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(0.866−0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.33026406813193350872679287343, −21.88649963534907843751053324852, −21.20111218062436044961807818264, −20.28089658690331054152747110589, −19.664355224529053762315423485071, −18.67075512521047513189908557610, −18.18134655919387196170869888147, −16.96388798671680956404489160471, −15.82271475813851313468728452465, −15.59108092426760238580922894870, −14.60678693315063616080668286628, −13.87349626588912172347864954361, −12.95504916027566889200478802204, −12.105460809180730700541661582495, −11.06768868378479262480274794290, −10.09331190486967818938712577580, −9.32672405091380521601705058745, −8.6120130129740262426250508822, −7.753074336960502213704807429319, −6.8056109619202765545392292371, −5.38797667475817071553136082679, −4.81544482209350207574594191497, −3.61001932513694091777220803746, −2.53550090337567821506350258435, −2.01864929887238291002118664353,
0.4426096937966065867470371425, 1.92210209858526315697390143000, 2.74115415256602762934962404877, 3.84761255571361043606673405025, 4.70700516187075998071537101278, 6.06239057542802206819299610252, 7.08097944808003213779330645155, 7.77778036308314507684515008876, 8.41358905253800485343073147567, 9.65005082657938156062585920193, 10.28300640717824428395501217275, 11.250257006428188018083453458100, 12.60909156262785178388060126564, 12.994026270676652348680747946661, 13.89971639010086249679288467535, 14.60124093547784427349108995770, 15.46070033574133736287362914803, 16.31811405160076797243116189877, 17.49444551831663694259469893067, 17.97836700605118400041632794966, 18.99707119007710548553932069257, 19.85540133246853261839494598808, 20.22788256779962517986287911710, 21.109006203687137831355527171586, 22.003762379462338686189156182844