L(s) = 1 | + (0.987 + 0.156i)3-s + 7-s + (0.951 + 0.309i)9-s + (−0.453 + 0.891i)11-s + (−0.891 + 0.453i)13-s + (−0.587 + 0.809i)17-s + (−0.987 + 0.156i)19-s + (0.987 + 0.156i)21-s + (0.309 + 0.951i)23-s + (0.891 + 0.453i)27-s + (−0.156 + 0.987i)29-s + (0.809 + 0.587i)31-s + (−0.587 + 0.809i)33-s + (0.453 + 0.891i)37-s + (−0.951 + 0.309i)39-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)3-s + 7-s + (0.951 + 0.309i)9-s + (−0.453 + 0.891i)11-s + (−0.891 + 0.453i)13-s + (−0.587 + 0.809i)17-s + (−0.987 + 0.156i)19-s + (0.987 + 0.156i)21-s + (0.309 + 0.951i)23-s + (0.891 + 0.453i)27-s + (−0.156 + 0.987i)29-s + (0.809 + 0.587i)31-s + (−0.587 + 0.809i)33-s + (0.453 + 0.891i)37-s + (−0.951 + 0.309i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.726075801 + 1.143548052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.726075801 + 1.143548052i\) |
\(L(1)\) |
\(\approx\) |
\(1.453615010 + 0.3737225048i\) |
\(L(1)\) |
\(\approx\) |
\(1.453615010 + 0.3737225048i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.987 + 0.156i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.453 + 0.891i)T \) |
| 13 | \( 1 + (-0.891 + 0.453i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
| 19 | \( 1 + (-0.987 + 0.156i)T \) |
| 23 | \( 1 + (0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.156 + 0.987i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.453 + 0.891i)T \) |
| 41 | \( 1 + (-0.951 - 0.309i)T \) |
| 43 | \( 1 + (0.707 - 0.707i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.156 - 0.987i)T \) |
| 59 | \( 1 + (0.891 - 0.453i)T \) |
| 61 | \( 1 + (-0.891 - 0.453i)T \) |
| 67 | \( 1 + (-0.156 - 0.987i)T \) |
| 71 | \( 1 + (0.587 + 0.809i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.156 - 0.987i)T \) |
| 89 | \( 1 + (0.951 - 0.309i)T \) |
| 97 | \( 1 + (-0.587 - 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.90016030046702137511106428929, −21.10627937474908943431453731364, −20.6434769399795242116590434559, −19.69792998445435869832151836098, −18.99317690512703652879489593180, −18.21539112650498552510784916, −17.42471291064806202076813183028, −16.42353108336385645590708576593, −15.351519065718779249397341469845, −14.83800340709082862909762591905, −13.99584209814555860541155437702, −13.30681373009942706232028005937, −12.44081863808081299456008167214, −11.368903477285905029111477188544, −10.55926148553007108812826724725, −9.55857412570912667713055146245, −8.60431089266163687029008535140, −8.02648622260554285780162277033, −7.24897646323885490257736349453, −6.10897198837728224309429927437, −4.84535540049956175414450190802, −4.182787995419184380963357356218, −2.729174276440612748101871229354, −2.32170500053484747637916023185, −0.824209712927794866432819899994,
1.728057078829216268503804564451, 2.16294662934622006400482468353, 3.46948894853398049444949420958, 4.552321893887670631638559156700, 5.038142423696457927317142217881, 6.67808390131948533867819525102, 7.47246708281300224242050745472, 8.28139708042815260234660428285, 8.990214346590885042358252459315, 10.02732593449150005388044430255, 10.6687982827017702352341300254, 11.83723126761555573815582088284, 12.73012712561517667792009311029, 13.528700109116520977314611525304, 14.506416554093526872502909910975, 14.99764112397806843682026474106, 15.61281162009337822120475924351, 16.917015182299566307497265278015, 17.58570837252707983588304790586, 18.485182115704082488679331265137, 19.38787280932291702616376420574, 20.00466392794614681910312176162, 20.85475519810575843561653963685, 21.45123460027172338065630615577, 22.12763887908340710126793391109