Properties

Label 1-800-800.187-r0-0-0
Degree 11
Conductor 800800
Sign 0.389+0.920i0.389 + 0.920i
Analytic cond. 3.715183.71518
Root an. cond. 3.715183.71518
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.987 + 0.156i)3-s + 7-s + (0.951 + 0.309i)9-s + (−0.453 + 0.891i)11-s + (−0.891 + 0.453i)13-s + (−0.587 + 0.809i)17-s + (−0.987 + 0.156i)19-s + (0.987 + 0.156i)21-s + (0.309 + 0.951i)23-s + (0.891 + 0.453i)27-s + (−0.156 + 0.987i)29-s + (0.809 + 0.587i)31-s + (−0.587 + 0.809i)33-s + (0.453 + 0.891i)37-s + (−0.951 + 0.309i)39-s + ⋯
L(s)  = 1  + (0.987 + 0.156i)3-s + 7-s + (0.951 + 0.309i)9-s + (−0.453 + 0.891i)11-s + (−0.891 + 0.453i)13-s + (−0.587 + 0.809i)17-s + (−0.987 + 0.156i)19-s + (0.987 + 0.156i)21-s + (0.309 + 0.951i)23-s + (0.891 + 0.453i)27-s + (−0.156 + 0.987i)29-s + (0.809 + 0.587i)31-s + (−0.587 + 0.809i)33-s + (0.453 + 0.891i)37-s + (−0.951 + 0.309i)39-s + ⋯

Functional equation

Λ(s)=(800s/2ΓR(s)L(s)=((0.389+0.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(800s/2ΓR(s)L(s)=((0.389+0.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 800800    =    25522^{5} \cdot 5^{2}
Sign: 0.389+0.920i0.389 + 0.920i
Analytic conductor: 3.715183.71518
Root analytic conductor: 3.715183.71518
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ800(187,)\chi_{800} (187, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 800, (0: ), 0.389+0.920i)(1,\ 800,\ (0:\ ),\ 0.389 + 0.920i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.726075801+1.143548052i1.726075801 + 1.143548052i
L(12)L(\frac12) \approx 1.726075801+1.143548052i1.726075801 + 1.143548052i
L(1)L(1) \approx 1.453615010+0.3737225048i1.453615010 + 0.3737225048i
L(1)L(1) \approx 1.453615010+0.3737225048i1.453615010 + 0.3737225048i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 1+(0.987+0.156i)T 1 + (0.987 + 0.156i)T
7 1+T 1 + T
11 1+(0.453+0.891i)T 1 + (-0.453 + 0.891i)T
13 1+(0.891+0.453i)T 1 + (-0.891 + 0.453i)T
17 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
19 1+(0.987+0.156i)T 1 + (-0.987 + 0.156i)T
23 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
29 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
31 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
37 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
41 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
53 1+(0.1560.987i)T 1 + (0.156 - 0.987i)T
59 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
61 1+(0.8910.453i)T 1 + (-0.891 - 0.453i)T
67 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
71 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
73 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
79 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
83 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
89 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
97 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.90016030046702137511106428929, −21.10627937474908943431453731364, −20.6434769399795242116590434559, −19.69792998445435869832151836098, −18.99317690512703652879489593180, −18.21539112650498552510784916, −17.42471291064806202076813183028, −16.42353108336385645590708576593, −15.351519065718779249397341469845, −14.83800340709082862909762591905, −13.99584209814555860541155437702, −13.30681373009942706232028005937, −12.44081863808081299456008167214, −11.368903477285905029111477188544, −10.55926148553007108812826724725, −9.55857412570912667713055146245, −8.60431089266163687029008535140, −8.02648622260554285780162277033, −7.24897646323885490257736349453, −6.10897198837728224309429927437, −4.84535540049956175414450190802, −4.182787995419184380963357356218, −2.729174276440612748101871229354, −2.32170500053484747637916023185, −0.824209712927794866432819899994, 1.728057078829216268503804564451, 2.16294662934622006400482468353, 3.46948894853398049444949420958, 4.552321893887670631638559156700, 5.038142423696457927317142217881, 6.67808390131948533867819525102, 7.47246708281300224242050745472, 8.28139708042815260234660428285, 8.990214346590885042358252459315, 10.02732593449150005388044430255, 10.6687982827017702352341300254, 11.83723126761555573815582088284, 12.73012712561517667792009311029, 13.528700109116520977314611525304, 14.506416554093526872502909910975, 14.99764112397806843682026474106, 15.61281162009337822120475924351, 16.917015182299566307497265278015, 17.58570837252707983588304790586, 18.485182115704082488679331265137, 19.38787280932291702616376420574, 20.00466392794614681910312176162, 20.85475519810575843561653963685, 21.45123460027172338065630615577, 22.12763887908340710126793391109

Graph of the ZZ-function along the critical line