L(s) = 1 | + (0.891 − 0.453i)3-s − i·7-s + (0.587 − 0.809i)9-s + (−0.156 + 0.987i)11-s + (0.156 + 0.987i)13-s + (−0.309 − 0.951i)17-s + (0.453 − 0.891i)19-s + (−0.453 − 0.891i)21-s + (−0.587 − 0.809i)23-s + (0.156 − 0.987i)27-s + (0.891 − 0.453i)29-s + (0.309 + 0.951i)31-s + (0.309 + 0.951i)33-s + (0.987 − 0.156i)37-s + (0.587 + 0.809i)39-s + ⋯ |
L(s) = 1 | + (0.891 − 0.453i)3-s − i·7-s + (0.587 − 0.809i)9-s + (−0.156 + 0.987i)11-s + (0.156 + 0.987i)13-s + (−0.309 − 0.951i)17-s + (0.453 − 0.891i)19-s + (−0.453 − 0.891i)21-s + (−0.587 − 0.809i)23-s + (0.156 − 0.987i)27-s + (0.891 − 0.453i)29-s + (0.309 + 0.951i)31-s + (0.309 + 0.951i)33-s + (0.987 − 0.156i)37-s + (0.587 + 0.809i)39-s + ⋯ |
Λ(s)=(=(800s/2ΓR(s)L(s)(0.331−0.943i)Λ(1−s)
Λ(s)=(=(800s/2ΓR(s)L(s)(0.331−0.943i)Λ(1−s)
Degree: |
1 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.331−0.943i
|
Analytic conductor: |
3.71518 |
Root analytic conductor: |
3.71518 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(381,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 800, (0: ), 0.331−0.943i)
|
Particular Values
L(21) |
≈ |
1.616088455−1.145313394i |
L(21) |
≈ |
1.616088455−1.145313394i |
L(1) |
≈ |
1.368080227−0.4345488752i |
L(1) |
≈ |
1.368080227−0.4345488752i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.891−0.453i)T |
| 7 | 1−iT |
| 11 | 1+(−0.156+0.987i)T |
| 13 | 1+(0.156+0.987i)T |
| 17 | 1+(−0.309−0.951i)T |
| 19 | 1+(0.453−0.891i)T |
| 23 | 1+(−0.587−0.809i)T |
| 29 | 1+(0.891−0.453i)T |
| 31 | 1+(0.309+0.951i)T |
| 37 | 1+(0.987−0.156i)T |
| 41 | 1+(0.587−0.809i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+(−0.309+0.951i)T |
| 53 | 1+(−0.453−0.891i)T |
| 59 | 1+(0.987−0.156i)T |
| 61 | 1+(−0.987−0.156i)T |
| 67 | 1+(−0.453+0.891i)T |
| 71 | 1+(−0.951−0.309i)T |
| 73 | 1+(−0.587−0.809i)T |
| 79 | 1+(−0.309+0.951i)T |
| 83 | 1+(0.453−0.891i)T |
| 89 | 1+(0.587+0.809i)T |
| 97 | 1+(0.309−0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.0598873932975061520962070062, −21.65591973916300422170532878130, −20.90382351921010917748897391381, −19.97961404103297597260086587663, −19.31855963869479510539371194151, −18.53378286628732259676348957705, −17.783233684202836364900063779097, −16.498382299316728231625340402046, −15.842934089481936534720936578273, −15.132990128092978934362597078028, −14.45258491679902635497024657940, −13.47216557585835495026428103731, −12.81155916021645605973099868732, −11.74521468286124607995793457234, −10.75405177240989401214631632869, −9.93501923530478267988999851898, −9.07330718043912234495735246006, −8.18348749253856973386536176592, −7.83463169704723502742958536887, −6.13049531855631125885234636757, −5.56964162152594940677871247778, −4.33078594333958220893938520236, −3.29894724819435308824927768291, −2.657220379667556747355065355337, −1.43948151915806662767936372594,
0.869579691472170297448605563014, 2.05422331831308722840356174250, 2.91672772218807014332432575185, 4.183103575743962503345323630, 4.68697100582264074506854765134, 6.450018064162685479556072431200, 7.0914844552354611743815399057, 7.71750183141089928981764243347, 8.84105451413060663947780352005, 9.56812493182015934429433771594, 10.38535752630334179685372742141, 11.53777404616730432656495928067, 12.40709010789690891764426513719, 13.31497437765597812143730314981, 14.00423168576180692322526246078, 14.51260462562445849874050151381, 15.68887068097503394786535833475, 16.28028672387717799044224131329, 17.63108249316599864378208419105, 17.95127542203227275108508208240, 19.11077534975288521414584738024, 19.729578948303058427598273198971, 20.51801260997641467859183460912, 20.93246239191831563486577883585, 22.13141823267987946573813339901