Properties

Label 1-800-800.381-r0-0-0
Degree 11
Conductor 800800
Sign 0.3310.943i0.331 - 0.943i
Analytic cond. 3.715183.71518
Root an. cond. 3.715183.71518
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.891 − 0.453i)3-s i·7-s + (0.587 − 0.809i)9-s + (−0.156 + 0.987i)11-s + (0.156 + 0.987i)13-s + (−0.309 − 0.951i)17-s + (0.453 − 0.891i)19-s + (−0.453 − 0.891i)21-s + (−0.587 − 0.809i)23-s + (0.156 − 0.987i)27-s + (0.891 − 0.453i)29-s + (0.309 + 0.951i)31-s + (0.309 + 0.951i)33-s + (0.987 − 0.156i)37-s + (0.587 + 0.809i)39-s + ⋯
L(s)  = 1  + (0.891 − 0.453i)3-s i·7-s + (0.587 − 0.809i)9-s + (−0.156 + 0.987i)11-s + (0.156 + 0.987i)13-s + (−0.309 − 0.951i)17-s + (0.453 − 0.891i)19-s + (−0.453 − 0.891i)21-s + (−0.587 − 0.809i)23-s + (0.156 − 0.987i)27-s + (0.891 − 0.453i)29-s + (0.309 + 0.951i)31-s + (0.309 + 0.951i)33-s + (0.987 − 0.156i)37-s + (0.587 + 0.809i)39-s + ⋯

Functional equation

Λ(s)=(800s/2ΓR(s)L(s)=((0.3310.943i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(800s/2ΓR(s)L(s)=((0.3310.943i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 800800    =    25522^{5} \cdot 5^{2}
Sign: 0.3310.943i0.331 - 0.943i
Analytic conductor: 3.715183.71518
Root analytic conductor: 3.715183.71518
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ800(381,)\chi_{800} (381, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 800, (0: ), 0.3310.943i)(1,\ 800,\ (0:\ ),\ 0.331 - 0.943i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6160884551.145313394i1.616088455 - 1.145313394i
L(12)L(\frac12) \approx 1.6160884551.145313394i1.616088455 - 1.145313394i
L(1)L(1) \approx 1.3680802270.4345488752i1.368080227 - 0.4345488752i
L(1)L(1) \approx 1.3680802270.4345488752i1.368080227 - 0.4345488752i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
7 1iT 1 - iT
11 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
13 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
17 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
19 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
23 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
29 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
31 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
37 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
41 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
53 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
59 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
61 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
67 1+(0.453+0.891i)T 1 + (-0.453 + 0.891i)T
71 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
73 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
79 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
83 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
89 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
97 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.0598873932975061520962070062, −21.65591973916300422170532878130, −20.90382351921010917748897391381, −19.97961404103297597260086587663, −19.31855963869479510539371194151, −18.53378286628732259676348957705, −17.783233684202836364900063779097, −16.498382299316728231625340402046, −15.842934089481936534720936578273, −15.132990128092978934362597078028, −14.45258491679902635497024657940, −13.47216557585835495026428103731, −12.81155916021645605973099868732, −11.74521468286124607995793457234, −10.75405177240989401214631632869, −9.93501923530478267988999851898, −9.07330718043912234495735246006, −8.18348749253856973386536176592, −7.83463169704723502742958536887, −6.13049531855631125885234636757, −5.56964162152594940677871247778, −4.33078594333958220893938520236, −3.29894724819435308824927768291, −2.657220379667556747355065355337, −1.43948151915806662767936372594, 0.869579691472170297448605563014, 2.05422331831308722840356174250, 2.91672772218807014332432575185, 4.183103575743962503345323630, 4.68697100582264074506854765134, 6.450018064162685479556072431200, 7.0914844552354611743815399057, 7.71750183141089928981764243347, 8.84105451413060663947780352005, 9.56812493182015934429433771594, 10.38535752630334179685372742141, 11.53777404616730432656495928067, 12.40709010789690891764426513719, 13.31497437765597812143730314981, 14.00423168576180692322526246078, 14.51260462562445849874050151381, 15.68887068097503394786535833475, 16.28028672387717799044224131329, 17.63108249316599864378208419105, 17.95127542203227275108508208240, 19.11077534975288521414584738024, 19.729578948303058427598273198971, 20.51801260997641467859183460912, 20.93246239191831563486577883585, 22.13141823267987946573813339901

Graph of the ZZ-function along the critical line