L(s) = 1 | + (−0.781 + 0.623i)3-s + (−0.900 + 0.433i)5-s + (0.222 − 0.974i)9-s + (−0.974 + 0.222i)11-s + (−0.222 − 0.974i)13-s + (0.433 − 0.900i)15-s − i·17-s + (0.781 + 0.623i)19-s + (0.900 + 0.433i)23-s + (0.623 − 0.781i)25-s + (0.433 + 0.900i)27-s + (−0.433 − 0.900i)31-s + (0.623 − 0.781i)33-s + (0.974 + 0.222i)37-s + (0.781 + 0.623i)39-s + ⋯ |
L(s) = 1 | + (−0.781 + 0.623i)3-s + (−0.900 + 0.433i)5-s + (0.222 − 0.974i)9-s + (−0.974 + 0.222i)11-s + (−0.222 − 0.974i)13-s + (0.433 − 0.900i)15-s − i·17-s + (0.781 + 0.623i)19-s + (0.900 + 0.433i)23-s + (0.623 − 0.781i)25-s + (0.433 + 0.900i)27-s + (−0.433 − 0.900i)31-s + (0.623 − 0.781i)33-s + (0.974 + 0.222i)37-s + (0.781 + 0.623i)39-s + ⋯ |
Λ(s)=(=(812s/2ΓR(s+1)L(s)(−0.995+0.0915i)Λ(1−s)
Λ(s)=(=(812s/2ΓR(s+1)L(s)(−0.995+0.0915i)Λ(1−s)
Degree: |
1 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
−0.995+0.0915i
|
Analytic conductor: |
87.2615 |
Root analytic conductor: |
87.2615 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 812, (1: ), −0.995+0.0915i)
|
Particular Values
L(21) |
≈ |
0.01189793904+0.2593388985i |
L(21) |
≈ |
0.01189793904+0.2593388985i |
L(1) |
≈ |
0.6030885426+0.1295193452i |
L(1) |
≈ |
0.6030885426+0.1295193452i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 29 | 1 |
good | 3 | 1+(−0.781+0.623i)T |
| 5 | 1+(−0.900+0.433i)T |
| 11 | 1+(−0.974+0.222i)T |
| 13 | 1+(−0.222−0.974i)T |
| 17 | 1−iT |
| 19 | 1+(0.781+0.623i)T |
| 23 | 1+(0.900+0.433i)T |
| 31 | 1+(−0.433−0.900i)T |
| 37 | 1+(0.974+0.222i)T |
| 41 | 1+iT |
| 43 | 1+(−0.433+0.900i)T |
| 47 | 1+(−0.974+0.222i)T |
| 53 | 1+(−0.900+0.433i)T |
| 59 | 1+T |
| 61 | 1+(0.781−0.623i)T |
| 67 | 1+(−0.222+0.974i)T |
| 71 | 1+(−0.222−0.974i)T |
| 73 | 1+(0.433−0.900i)T |
| 79 | 1+(0.974+0.222i)T |
| 83 | 1+(0.623−0.781i)T |
| 89 | 1+(0.433+0.900i)T |
| 97 | 1+(0.781+0.623i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.71621089365195604679499152760, −20.90110148115660027210178184313, −19.81730887235591497566009761018, −19.16214116434549495223776632890, −18.52780855344405570563737824894, −17.62201933986011042985582837842, −16.72448117065535928005557700193, −16.16288282479164051242936558187, −15.37216154218805239012284891937, −14.27049468897158860306826242470, −13.1498983443521795830913559804, −12.68772380885501107016915199676, −11.75062268274024621469867244886, −11.15187606369090883294235523978, −10.33158081146837545215552737714, −8.99175109559655239974952274103, −8.148467639677118404650507519945, −7.30973944395244817235670620514, −6.61204705808339150667778064284, −5.349559174737439058628723924732, −4.79406102411802986760500063431, −3.63604727293965786597545085588, −2.3157101287846803667257919856, −1.11261541151883082701787560129, −0.093903469645713564127230550629,
0.877648178308628961140018010830, 2.807227869143335964205996319211, 3.47629083181154333797197866062, 4.70447145390855243551588463479, 5.27303168299133114570770270934, 6.35915989929790730115746900850, 7.46624649420606383327471772937, 7.991790060057767886727127439426, 9.46219049330155213698681073179, 10.09812593769381545415578859287, 11.06671559767390903462635590743, 11.52657621869702904547195051808, 12.48774715752412486735223252707, 13.29086477692461430088922044552, 14.74023704365048221198103087590, 15.165803920260762023349653004291, 16.06177871981021402394213027697, 16.49427462959319244702230477410, 17.8017897607726494186460538985, 18.203386213390163237899503127941, 19.11178199757133025569816344333, 20.31979116630743055240360845098, 20.65985974181877157057556062176, 21.79334970674517111572957802465, 22.56982120430834923766344521660