Properties

Label 1-812-812.55-r1-0-0
Degree 11
Conductor 812812
Sign 0.995+0.0915i-0.995 + 0.0915i
Analytic cond. 87.261587.2615
Root an. cond. 87.261587.2615
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.781 + 0.623i)3-s + (−0.900 + 0.433i)5-s + (0.222 − 0.974i)9-s + (−0.974 + 0.222i)11-s + (−0.222 − 0.974i)13-s + (0.433 − 0.900i)15-s i·17-s + (0.781 + 0.623i)19-s + (0.900 + 0.433i)23-s + (0.623 − 0.781i)25-s + (0.433 + 0.900i)27-s + (−0.433 − 0.900i)31-s + (0.623 − 0.781i)33-s + (0.974 + 0.222i)37-s + (0.781 + 0.623i)39-s + ⋯
L(s)  = 1  + (−0.781 + 0.623i)3-s + (−0.900 + 0.433i)5-s + (0.222 − 0.974i)9-s + (−0.974 + 0.222i)11-s + (−0.222 − 0.974i)13-s + (0.433 − 0.900i)15-s i·17-s + (0.781 + 0.623i)19-s + (0.900 + 0.433i)23-s + (0.623 − 0.781i)25-s + (0.433 + 0.900i)27-s + (−0.433 − 0.900i)31-s + (0.623 − 0.781i)33-s + (0.974 + 0.222i)37-s + (0.781 + 0.623i)39-s + ⋯

Functional equation

Λ(s)=(812s/2ΓR(s+1)L(s)=((0.995+0.0915i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 + 0.0915i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(812s/2ΓR(s+1)L(s)=((0.995+0.0915i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 + 0.0915i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 812812    =    227292^{2} \cdot 7 \cdot 29
Sign: 0.995+0.0915i-0.995 + 0.0915i
Analytic conductor: 87.261587.2615
Root analytic conductor: 87.261587.2615
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ812(55,)\chi_{812} (55, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 812, (1: ), 0.995+0.0915i)(1,\ 812,\ (1:\ ),\ -0.995 + 0.0915i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.01189793904+0.2593388985i0.01189793904 + 0.2593388985i
L(12)L(\frac12) \approx 0.01189793904+0.2593388985i0.01189793904 + 0.2593388985i
L(1)L(1) \approx 0.6030885426+0.1295193452i0.6030885426 + 0.1295193452i
L(1)L(1) \approx 0.6030885426+0.1295193452i0.6030885426 + 0.1295193452i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
29 1 1
good3 1+(0.781+0.623i)T 1 + (-0.781 + 0.623i)T
5 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
11 1+(0.974+0.222i)T 1 + (-0.974 + 0.222i)T
13 1+(0.2220.974i)T 1 + (-0.222 - 0.974i)T
17 1iT 1 - iT
19 1+(0.781+0.623i)T 1 + (0.781 + 0.623i)T
23 1+(0.900+0.433i)T 1 + (0.900 + 0.433i)T
31 1+(0.4330.900i)T 1 + (-0.433 - 0.900i)T
37 1+(0.974+0.222i)T 1 + (0.974 + 0.222i)T
41 1+iT 1 + iT
43 1+(0.433+0.900i)T 1 + (-0.433 + 0.900i)T
47 1+(0.974+0.222i)T 1 + (-0.974 + 0.222i)T
53 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
59 1+T 1 + T
61 1+(0.7810.623i)T 1 + (0.781 - 0.623i)T
67 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
71 1+(0.2220.974i)T 1 + (-0.222 - 0.974i)T
73 1+(0.4330.900i)T 1 + (0.433 - 0.900i)T
79 1+(0.974+0.222i)T 1 + (0.974 + 0.222i)T
83 1+(0.6230.781i)T 1 + (0.623 - 0.781i)T
89 1+(0.433+0.900i)T 1 + (0.433 + 0.900i)T
97 1+(0.781+0.623i)T 1 + (0.781 + 0.623i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.71621089365195604679499152760, −20.90110148115660027210178184313, −19.81730887235591497566009761018, −19.16214116434549495223776632890, −18.52780855344405570563737824894, −17.62201933986011042985582837842, −16.72448117065535928005557700193, −16.16288282479164051242936558187, −15.37216154218805239012284891937, −14.27049468897158860306826242470, −13.1498983443521795830913559804, −12.68772380885501107016915199676, −11.75062268274024621469867244886, −11.15187606369090883294235523978, −10.33158081146837545215552737714, −8.99175109559655239974952274103, −8.148467639677118404650507519945, −7.30973944395244817235670620514, −6.61204705808339150667778064284, −5.349559174737439058628723924732, −4.79406102411802986760500063431, −3.63604727293965786597545085588, −2.3157101287846803667257919856, −1.11261541151883082701787560129, −0.093903469645713564127230550629, 0.877648178308628961140018010830, 2.807227869143335964205996319211, 3.47629083181154333797197866062, 4.70447145390855243551588463479, 5.27303168299133114570770270934, 6.35915989929790730115746900850, 7.46624649420606383327471772937, 7.991790060057767886727127439426, 9.46219049330155213698681073179, 10.09812593769381545415578859287, 11.06671559767390903462635590743, 11.52657621869702904547195051808, 12.48774715752412486735223252707, 13.29086477692461430088922044552, 14.74023704365048221198103087590, 15.165803920260762023349653004291, 16.06177871981021402394213027697, 16.49427462959319244702230477410, 17.8017897607726494186460538985, 18.203386213390163237899503127941, 19.11178199757133025569816344333, 20.31979116630743055240360845098, 20.65985974181877157057556062176, 21.79334970674517111572957802465, 22.56982120430834923766344521660

Graph of the ZZ-function along the critical line