L(s) = 1 | + (−0.955 + 0.294i)3-s + (0.365 + 0.930i)5-s + (0.826 − 0.563i)9-s + (−0.826 − 0.563i)11-s + (−0.900 + 0.433i)13-s + (−0.623 − 0.781i)15-s + (−0.5 − 0.866i)17-s + (−0.955 − 0.294i)19-s + (0.988 − 0.149i)23-s + (−0.733 + 0.680i)25-s + (−0.623 + 0.781i)27-s + (0.988 + 0.149i)31-s + (0.955 + 0.294i)33-s + (0.826 − 0.563i)37-s + (0.733 − 0.680i)39-s + ⋯ |
L(s) = 1 | + (−0.955 + 0.294i)3-s + (0.365 + 0.930i)5-s + (0.826 − 0.563i)9-s + (−0.826 − 0.563i)11-s + (−0.900 + 0.433i)13-s + (−0.623 − 0.781i)15-s + (−0.5 − 0.866i)17-s + (−0.955 − 0.294i)19-s + (0.988 − 0.149i)23-s + (−0.733 + 0.680i)25-s + (−0.623 + 0.781i)27-s + (0.988 + 0.149i)31-s + (0.955 + 0.294i)33-s + (0.826 − 0.563i)37-s + (0.733 − 0.680i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.570 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.570 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9092162723 + 0.4751268936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9092162723 + 0.4751268936i\) |
\(L(1)\) |
\(\approx\) |
\(0.7271997337 + 0.1491178714i\) |
\(L(1)\) |
\(\approx\) |
\(0.7271997337 + 0.1491178714i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + (-0.955 + 0.294i)T \) |
| 5 | \( 1 + (0.365 + 0.930i)T \) |
| 11 | \( 1 + (-0.826 - 0.563i)T \) |
| 13 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.955 - 0.294i)T \) |
| 23 | \( 1 + (0.988 - 0.149i)T \) |
| 31 | \( 1 + (0.988 + 0.149i)T \) |
| 37 | \( 1 + (0.826 - 0.563i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.623 - 0.781i)T \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T \) |
| 53 | \( 1 + (-0.988 - 0.149i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.733 - 0.680i)T \) |
| 67 | \( 1 + (-0.0747 - 0.997i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.365 - 0.930i)T \) |
| 79 | \( 1 + (-0.826 + 0.563i)T \) |
| 83 | \( 1 + (0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.365 + 0.930i)T \) |
| 97 | \( 1 + (-0.222 - 0.974i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.74848430538033189881198131428, −21.3258748548100128762611142600, −20.34842064124179056788044152851, −19.46769088009864298557287291063, −18.622828194719649418933570929286, −17.444086707287169925167284202011, −17.38155686722480467662244358075, −16.4560424077111700703075097301, −15.550656519101396372878527507726, −14.77110246821903190199748392035, −13.281108022490736723007011425232, −12.89812625085174106529311138543, −12.28935339206638426321018047264, −11.25921760880541782167292923881, −10.308188227122811281168227132255, −9.72452804950961592324567668377, −8.45006310788013090336599592606, −7.690230726717482153155870790771, −6.61199952665786015252158606169, −5.758030809307033126595953907765, −4.89002101706901509067183404815, −4.35513120044298673677820735354, −2.54386587215306887242302003593, −1.59037280022670487280624709662, −0.448972607660311696345252289886,
0.58147353997754605919053171910, 2.21341537806063431998575792252, 3.054150646662338030323074807429, 4.42556552827909327922142923449, 5.160205182460617805216706552710, 6.19624931989452940844619507370, 6.83492973148814387328445917361, 7.70452440773628056333191440010, 9.14470907755305503995462636436, 9.8895106059793750021713656111, 10.8752853749813025462565722649, 11.1389458500976679891973996387, 12.25385600731041774231313158955, 13.149362184864268150343609618058, 14.04680867968636687048951502568, 15.02789043286954847149610630736, 15.66354177310871715371853029165, 16.62834738656139842991290662341, 17.35084917536862246831010279403, 18.08968243025296500728029895338, 18.789506396425741980486357220198, 19.53329991488789384129473443646, 21.01084284688300506368154126155, 21.37121778322892083408372912934, 22.21395852540296586558124683584