L(s) = 1 | + (−0.615 + 0.788i)2-s + (−0.241 − 0.970i)4-s + (0.173 − 0.984i)5-s + (−0.997 + 0.0697i)7-s + (0.913 + 0.406i)8-s + (0.669 + 0.743i)10-s + (0.438 − 0.898i)11-s + (−0.615 − 0.788i)13-s + (0.559 − 0.829i)14-s + (−0.882 + 0.469i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.997 + 0.0697i)20-s + (0.438 + 0.898i)22-s + (−0.997 − 0.0697i)23-s + ⋯ |
L(s) = 1 | + (−0.615 + 0.788i)2-s + (−0.241 − 0.970i)4-s + (0.173 − 0.984i)5-s + (−0.997 + 0.0697i)7-s + (0.913 + 0.406i)8-s + (0.669 + 0.743i)10-s + (0.438 − 0.898i)11-s + (−0.615 − 0.788i)13-s + (0.559 − 0.829i)14-s + (−0.882 + 0.469i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.997 + 0.0697i)20-s + (0.438 + 0.898i)22-s + (−0.997 − 0.0697i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0433i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0433i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.002149267152 - 0.09912325492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.002149267152 - 0.09912325492i\) |
\(L(1)\) |
\(\approx\) |
\(0.5512557060 + 0.006408941986i\) |
\(L(1)\) |
\(\approx\) |
\(0.5512557060 + 0.006408941986i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.615 + 0.788i)T \) |
| 5 | \( 1 + (0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.997 + 0.0697i)T \) |
| 11 | \( 1 + (0.438 - 0.898i)T \) |
| 13 | \( 1 + (-0.615 - 0.788i)T \) |
| 17 | \( 1 + (-0.104 - 0.994i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (-0.997 - 0.0697i)T \) |
| 29 | \( 1 + (-0.615 + 0.788i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.0348 + 0.999i)T \) |
| 43 | \( 1 + (0.990 + 0.139i)T \) |
| 47 | \( 1 + (0.848 + 0.529i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.990 - 0.139i)T \) |
| 61 | \( 1 + (0.766 - 0.642i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.104 - 0.994i)T \) |
| 73 | \( 1 + (-0.104 + 0.994i)T \) |
| 79 | \( 1 + (0.961 - 0.275i)T \) |
| 83 | \( 1 + (-0.615 + 0.788i)T \) |
| 89 | \( 1 + (-0.104 + 0.994i)T \) |
| 97 | \( 1 + (0.438 - 0.898i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.321205025628902834265529575706, −21.82286475826558304336721294907, −20.94879604481942451142238822554, −19.89659732881566565857459920624, −19.183208299014394584516948169490, −18.95990021776518359304224716351, −17.649712670051257683444192409589, −17.3198158960734462826676672469, −16.32076070429382119086993399350, −15.31178152588499932311315932209, −14.417861764861473562021367655, −13.484160824326412078441151112983, −12.56660924243454542427475237661, −11.95860699195116351770458644036, −10.90206613503407193419001362178, −10.17515900773157530168080452780, −9.606625440277847111357303676379, −8.75471171667060159244469657487, −7.45735471703523044646956520869, −6.88929199645465093533721578297, −5.97595226833309315417900652551, −4.17575112564332487803925500297, −3.75218057865968363638669981778, −2.38192440050590045104393181592, −1.95916631330477322173917189391,
0.05848197325559463353526298396, 1.15017331864253056588113257898, 2.561234118806957877482060510577, 3.94980300468822718974308260989, 5.05403377629247561489638265205, 5.85327885020251846600656602470, 6.56082320115568375487982623308, 7.67757601093843655596546843957, 8.50524478821704606830681905223, 9.26360111807277203095022803253, 9.867071208415017598524620494673, 10.82671745759595570925561805836, 12.05461250922183930667101174292, 12.93115379989537481925332602322, 13.69075743915333565578522338032, 14.55357586299177222526334763471, 15.651931570343542213764023084437, 16.20352093158815845121251686149, 16.82922700764250676421585442493, 17.5184881749431799469762422792, 18.51846306346126055232290494375, 19.3199126920475815557985526177, 19.94150444042142454148099007446, 20.68436880426527148612789133685, 22.02848668172529673865761604673