L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.5 + 0.866i)3-s + (0.723 + 0.690i)4-s + (−0.580 − 0.814i)5-s + (−0.142 − 0.989i)6-s + (−0.415 − 0.909i)8-s + (−0.5 + 0.866i)9-s + (0.235 + 0.971i)10-s + (−0.235 + 0.971i)12-s + (−0.959 + 0.281i)13-s + (0.415 − 0.909i)15-s + (0.0475 + 0.998i)16-s + (−0.327 + 0.945i)17-s + (0.786 − 0.618i)18-s + (−0.327 − 0.945i)19-s + (0.142 − 0.989i)20-s + ⋯ |
L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.5 + 0.866i)3-s + (0.723 + 0.690i)4-s + (−0.580 − 0.814i)5-s + (−0.142 − 0.989i)6-s + (−0.415 − 0.909i)8-s + (−0.5 + 0.866i)9-s + (0.235 + 0.971i)10-s + (−0.235 + 0.971i)12-s + (−0.959 + 0.281i)13-s + (0.415 − 0.909i)15-s + (0.0475 + 0.998i)16-s + (−0.327 + 0.945i)17-s + (0.786 − 0.618i)18-s + (−0.327 − 0.945i)19-s + (0.142 − 0.989i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.647 - 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.647 - 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1078188370 - 0.2330263997i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1078188370 - 0.2330263997i\) |
\(L(1)\) |
\(\approx\) |
\(0.5770590097 + 0.01113182222i\) |
\(L(1)\) |
\(\approx\) |
\(0.5770590097 + 0.01113182222i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.928 - 0.371i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.580 - 0.814i)T \) |
| 13 | \( 1 + (-0.959 + 0.281i)T \) |
| 17 | \( 1 + (-0.327 + 0.945i)T \) |
| 19 | \( 1 + (-0.327 - 0.945i)T \) |
| 23 | \( 1 + (0.0475 + 0.998i)T \) |
| 29 | \( 1 + (0.654 - 0.755i)T \) |
| 31 | \( 1 + (-0.235 - 0.971i)T \) |
| 37 | \( 1 + (0.723 - 0.690i)T \) |
| 41 | \( 1 + (-0.142 - 0.989i)T \) |
| 43 | \( 1 + (-0.415 - 0.909i)T \) |
| 47 | \( 1 + (0.786 + 0.618i)T \) |
| 53 | \( 1 + (0.0475 - 0.998i)T \) |
| 59 | \( 1 + (-0.928 + 0.371i)T \) |
| 61 | \( 1 + (-0.786 - 0.618i)T \) |
| 67 | \( 1 + (-0.786 + 0.618i)T \) |
| 71 | \( 1 + (-0.654 + 0.755i)T \) |
| 73 | \( 1 + (-0.888 - 0.458i)T \) |
| 79 | \( 1 + (-0.580 - 0.814i)T \) |
| 83 | \( 1 + (0.841 + 0.540i)T \) |
| 89 | \( 1 + (-0.981 + 0.189i)T \) |
| 97 | \( 1 + (-0.415 - 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.72952358236653308426058947526, −21.49839629569770508008903455387, −20.13510064344482895343323355832, −19.99639460403083234168702340707, −19.02280561997161481881872889528, −18.393658018272314127585834862200, −17.96291701534502687736397111332, −16.89661060241913593311649705385, −16.05771119718610625223904091649, −14.95593419367336148764629310141, −14.62971520391875712700488734438, −13.77582598502410813637806042672, −12.382679168930848642446097776783, −11.85716654811056410580317145748, −10.806481487030205140284420375569, −10.02431703623266045173897781036, −9.00431678696464853045354106725, −8.13756239600870207520887919876, −7.49771537344972611990865648838, −6.80307129586462702079765375704, −6.114820541635589968373687970068, −4.70439408032115353175941596803, −3.055863355475874145975508001974, −2.54458336498652798569037580229, −1.28226332067308417038924850594,
0.1478142974155387147168078399, 1.78921131731641096846332621, 2.73912364452291746019122152716, 3.90225320820250883127291839562, 4.50422234103927148569846586125, 5.753122642640357747220414219997, 7.23419036815125010949135403785, 7.93780240641522586729219143311, 8.81001450445389592410092090906, 9.31859291182684599568219048040, 10.1641345898354708579655702005, 11.08744028846659031055385007622, 11.79250205502490622493326037601, 12.734611455405207590298742409069, 13.61729137079524981513858670156, 15.05106852701194676702560690046, 15.43793930942507598519964287097, 16.29846991183088361490040864445, 17.09057541271000548382598038471, 17.52414422125967627815212717807, 19.12527083577754936327263016249, 19.44153071458233002595485598239, 20.11942260145236491547539496109, 20.84413661996493174298736021556, 21.63402628512394576044475157622