L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.5 + 0.866i)3-s + (0.723 + 0.690i)4-s + (−0.580 − 0.814i)5-s + (−0.142 − 0.989i)6-s + (−0.415 − 0.909i)8-s + (−0.5 + 0.866i)9-s + (0.235 + 0.971i)10-s + (−0.235 + 0.971i)12-s + (−0.959 + 0.281i)13-s + (0.415 − 0.909i)15-s + (0.0475 + 0.998i)16-s + (−0.327 + 0.945i)17-s + (0.786 − 0.618i)18-s + (−0.327 − 0.945i)19-s + (0.142 − 0.989i)20-s + ⋯ |
L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.5 + 0.866i)3-s + (0.723 + 0.690i)4-s + (−0.580 − 0.814i)5-s + (−0.142 − 0.989i)6-s + (−0.415 − 0.909i)8-s + (−0.5 + 0.866i)9-s + (0.235 + 0.971i)10-s + (−0.235 + 0.971i)12-s + (−0.959 + 0.281i)13-s + (0.415 − 0.909i)15-s + (0.0475 + 0.998i)16-s + (−0.327 + 0.945i)17-s + (0.786 − 0.618i)18-s + (−0.327 − 0.945i)19-s + (0.142 − 0.989i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.647−0.762i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.647−0.762i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
−0.647−0.762i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(164,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), −0.647−0.762i)
|
Particular Values
L(21) |
≈ |
0.1078188370−0.2330263997i |
L(21) |
≈ |
0.1078188370−0.2330263997i |
L(1) |
≈ |
0.5770590097+0.01113182222i |
L(1) |
≈ |
0.5770590097+0.01113182222i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.928−0.371i)T |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1+(−0.580−0.814i)T |
| 13 | 1+(−0.959+0.281i)T |
| 17 | 1+(−0.327+0.945i)T |
| 19 | 1+(−0.327−0.945i)T |
| 23 | 1+(0.0475+0.998i)T |
| 29 | 1+(0.654−0.755i)T |
| 31 | 1+(−0.235−0.971i)T |
| 37 | 1+(0.723−0.690i)T |
| 41 | 1+(−0.142−0.989i)T |
| 43 | 1+(−0.415−0.909i)T |
| 47 | 1+(0.786+0.618i)T |
| 53 | 1+(0.0475−0.998i)T |
| 59 | 1+(−0.928+0.371i)T |
| 61 | 1+(−0.786−0.618i)T |
| 67 | 1+(−0.786+0.618i)T |
| 71 | 1+(−0.654+0.755i)T |
| 73 | 1+(−0.888−0.458i)T |
| 79 | 1+(−0.580−0.814i)T |
| 83 | 1+(0.841+0.540i)T |
| 89 | 1+(−0.981+0.189i)T |
| 97 | 1+(−0.415−0.909i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.72952358236653308426058947526, −21.49839629569770508008903455387, −20.13510064344482895343323355832, −19.99639460403083234168702340707, −19.02280561997161481881872889528, −18.393658018272314127585834862200, −17.96291701534502687736397111332, −16.89661060241913593311649705385, −16.05771119718610625223904091649, −14.95593419367336148764629310141, −14.62971520391875712700488734438, −13.77582598502410813637806042672, −12.382679168930848642446097776783, −11.85716654811056410580317145748, −10.806481487030205140284420375569, −10.02431703623266045173897781036, −9.00431678696464853045354106725, −8.13756239600870207520887919876, −7.49771537344972611990865648838, −6.80307129586462702079765375704, −6.114820541635589968373687970068, −4.70439408032115353175941596803, −3.055863355475874145975508001974, −2.54458336498652798569037580229, −1.28226332067308417038924850594,
0.1478142974155387147168078399, 1.78921131731641096846332621, 2.73912364452291746019122152716, 3.90225320820250883127291839562, 4.50422234103927148569846586125, 5.753122642640357747220414219997, 7.23419036815125010949135403785, 7.93780240641522586729219143311, 8.81001450445389592410092090906, 9.31859291182684599568219048040, 10.1641345898354708579655702005, 11.08744028846659031055385007622, 11.79250205502490622493326037601, 12.734611455405207590298742409069, 13.61729137079524981513858670156, 15.05106852701194676702560690046, 15.43793930942507598519964287097, 16.29846991183088361490040864445, 17.09057541271000548382598038471, 17.52414422125967627815212717807, 19.12527083577754936327263016249, 19.44153071458233002595485598239, 20.11942260145236491547539496109, 20.84413661996493174298736021556, 21.63402628512394576044475157622