L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 − 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (0.382 − 0.923i)12-s − 13-s + (−0.382 + 0.923i)14-s − 16-s + i·18-s + (0.707 − 0.707i)19-s − i·21-s + (−0.382 + 0.923i)22-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 − 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (0.382 − 0.923i)12-s − 13-s + (−0.382 + 0.923i)14-s − 16-s + i·18-s + (0.707 − 0.707i)19-s − i·21-s + (−0.382 + 0.923i)22-s + ⋯ |
Λ(s)=(=(85s/2ΓR(s)L(s)(−0.0672+0.997i)Λ(1−s)
Λ(s)=(=(85s/2ΓR(s)L(s)(−0.0672+0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
85
= 5⋅17
|
Sign: |
−0.0672+0.997i
|
Analytic conductor: |
0.394738 |
Root analytic conductor: |
0.394738 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 85, (0: ), −0.0672+0.997i)
|
Particular Values
L(21) |
≈ |
0.7119721737+0.7615648685i |
L(21) |
≈ |
0.7119721737+0.7615648685i |
L(1) |
≈ |
0.9642480719+0.5522556031i |
L(1) |
≈ |
0.9642480719+0.5522556031i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1+(0.707+0.707i)T |
| 3 | 1+(−0.923−0.382i)T |
| 7 | 1+(0.382+0.923i)T |
| 11 | 1+(0.382+0.923i)T |
| 13 | 1−T |
| 19 | 1+(0.707−0.707i)T |
| 23 | 1+(0.923−0.382i)T |
| 29 | 1+(−0.923−0.382i)T |
| 31 | 1+(0.382−0.923i)T |
| 37 | 1+(0.923+0.382i)T |
| 41 | 1+(−0.923+0.382i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+T |
| 53 | 1+(−0.707−0.707i)T |
| 59 | 1+(−0.707−0.707i)T |
| 61 | 1+(0.923−0.382i)T |
| 67 | 1+iT |
| 71 | 1+(−0.382+0.923i)T |
| 73 | 1+(0.382−0.923i)T |
| 79 | 1+(−0.382−0.923i)T |
| 83 | 1+(0.707+0.707i)T |
| 89 | 1+iT |
| 97 | 1+(0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−30.178862610654872686601371921288, −29.46377856434606464511205834934, −28.710794453366678051358885234000, −27.251236322120887640284788440686, −26.93926137913392384872603276865, −24.643478082461907982911136668197, −23.80227499896398337374821478247, −22.85591841401070606728388138511, −21.93482739481302151663191728202, −21.03630141462255951873818442052, −19.92867432883343144840675886522, −18.680317161523333984398565973656, −17.3176102748643916037113186894, −16.29435105821012980786809089578, −14.85693115485160348120801185696, −13.79990712914007177911427820132, −12.45829533695528217568972106529, −11.38908966035681649866506165795, −10.58218570984417844335183876668, −9.444366092782201870462512688189, −7.16143543030452948761413458359, −5.73922776767931742493230283191, −4.64754101297568639466517073421, −3.43638568954143145263750017115, −1.14813715685071839351923108299,
2.35910932539539867705045481879, 4.582173509587405477322745610515, 5.43525226383141049608089419618, 6.735741697945022185550354740678, 7.73585007335072522650885982882, 9.43030999403391821691639582545, 11.416382153818673334026647746128, 12.18952438993036098875810510849, 13.15151670670174937116614184195, 14.70896217923262512529824358033, 15.55930849271363417026429174147, 16.94924216649223516736493836343, 17.63007052328296346912229240006, 18.79765802226449380553908359628, 20.57515417809488288137136224889, 22.01594617359789964768590935272, 22.378420584732858494839078299150, 23.65257317164693537460960359605, 24.57250051362071088167273303208, 25.23556500071463016791703583696, 26.77967598218876911203321858596, 27.92822371867661842918456521327, 28.98701570593583853831902489542, 30.250565359797477304831752496243, 30.96179343326406070586417943195