Properties

Label 1-85-85.73-r0-0-0
Degree 11
Conductor 8585
Sign 0.0672+0.997i-0.0672 + 0.997i
Analytic cond. 0.3947380.394738
Root an. cond. 0.3947380.394738
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.923 − 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (0.382 − 0.923i)12-s − 13-s + (−0.382 + 0.923i)14-s − 16-s + i·18-s + (0.707 − 0.707i)19-s i·21-s + (−0.382 + 0.923i)22-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.923 − 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (0.382 + 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (0.382 − 0.923i)12-s − 13-s + (−0.382 + 0.923i)14-s − 16-s + i·18-s + (0.707 − 0.707i)19-s i·21-s + (−0.382 + 0.923i)22-s + ⋯

Functional equation

Λ(s)=(85s/2ΓR(s)L(s)=((0.0672+0.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0672 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(85s/2ΓR(s)L(s)=((0.0672+0.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0672 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 8585    =    5175 \cdot 17
Sign: 0.0672+0.997i-0.0672 + 0.997i
Analytic conductor: 0.3947380.394738
Root analytic conductor: 0.3947380.394738
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ85(73,)\chi_{85} (73, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 85, (0: ), 0.0672+0.997i)(1,\ 85,\ (0:\ ),\ -0.0672 + 0.997i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.7119721737+0.7615648685i0.7119721737 + 0.7615648685i
L(12)L(\frac12) \approx 0.7119721737+0.7615648685i0.7119721737 + 0.7615648685i
L(1)L(1) \approx 0.9642480719+0.5522556031i0.9642480719 + 0.5522556031i
L(1)L(1) \approx 0.9642480719+0.5522556031i0.9642480719 + 0.5522556031i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1 1
good2 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
3 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
7 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
11 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
13 1T 1 - T
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
29 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
31 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
37 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
41 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+T 1 + T
53 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
59 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
61 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
67 1+iT 1 + iT
71 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
73 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
79 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
83 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
89 1+iT 1 + iT
97 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.178862610654872686601371921288, −29.46377856434606464511205834934, −28.710794453366678051358885234000, −27.251236322120887640284788440686, −26.93926137913392384872603276865, −24.643478082461907982911136668197, −23.80227499896398337374821478247, −22.85591841401070606728388138511, −21.93482739481302151663191728202, −21.03630141462255951873818442052, −19.92867432883343144840675886522, −18.680317161523333984398565973656, −17.3176102748643916037113186894, −16.29435105821012980786809089578, −14.85693115485160348120801185696, −13.79990712914007177911427820132, −12.45829533695528217568972106529, −11.38908966035681649866506165795, −10.58218570984417844335183876668, −9.444366092782201870462512688189, −7.16143543030452948761413458359, −5.73922776767931742493230283191, −4.64754101297568639466517073421, −3.43638568954143145263750017115, −1.14813715685071839351923108299, 2.35910932539539867705045481879, 4.582173509587405477322745610515, 5.43525226383141049608089419618, 6.735741697945022185550354740678, 7.73585007335072522650885982882, 9.43030999403391821691639582545, 11.416382153818673334026647746128, 12.18952438993036098875810510849, 13.15151670670174937116614184195, 14.70896217923262512529824358033, 15.55930849271363417026429174147, 16.94924216649223516736493836343, 17.63007052328296346912229240006, 18.79765802226449380553908359628, 20.57515417809488288137136224889, 22.01594617359789964768590935272, 22.378420584732858494839078299150, 23.65257317164693537460960359605, 24.57250051362071088167273303208, 25.23556500071463016791703583696, 26.77967598218876911203321858596, 27.92822371867661842918456521327, 28.98701570593583853831902489542, 30.250565359797477304831752496243, 30.96179343326406070586417943195

Graph of the ZZ-function along the critical line