L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s − i·6-s − i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)12-s + i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 − 0.5i)18-s + (−0.866 + 0.5i)19-s + i·20-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s − i·6-s − i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)12-s + i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 − 0.5i)18-s + (−0.866 + 0.5i)19-s + i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.102 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.102 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.186646655 - 1.070475057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186646655 - 1.070475057i\) |
\(L(1)\) |
\(\approx\) |
\(1.386500283 - 0.8004514847i\) |
\(L(1)\) |
\(\approx\) |
\(1.386500283 - 0.8004514847i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−31.022858997988430083116277525955, −30.02416244237860143471508974444, −28.44116617219413261987936746718, −27.20108441685295784886852686259, −26.546165757271908762938835375008, −25.173829359093597987276025108079, −24.442502926629565887035859093413, −23.15023497438974146180936247209, −22.25797777801824764809683667888, −21.18837914738047852327070651304, −20.24859969283365557819648267119, −19.324673479381573916714882625439, −17.14856201397698879808536663690, −16.253928984085544196941456228177, −15.433131684381002519541949808332, −14.47168352857089153890151563305, −13.35748962931002639807818663860, −11.95322001781591803122267186630, −10.960666654135417337239991725263, −9.00345964372971763786718094654, −8.17701072043816006936068967808, −6.65320349361982106561728885631, −4.903296030629353602161364968154, −4.13085678887864485888401244816, −2.865654629979179506071405545304,
1.66054099299582962652779265541, 3.15240908719239836395290315457, 4.26244891129068368514472235812, 6.29081934596235963518770365973, 7.16019062729679537476339411198, 8.6705989170105587688866177667, 10.42051852218292050611454279535, 11.76386643419881705883653609254, 12.43339657546073263090943016272, 13.70919453520482245697286401711, 14.73751721028117985272790432325, 15.46897405303767845580709367181, 17.41008259552527091132407139836, 18.95582508355419156809775500793, 19.46604333081703175783603945960, 20.38001137745892638765683700496, 21.76020524627156936275212081867, 23.01251471775169963769261993608, 23.583936471620189054134545743805, 24.711856094155098627655410128034, 25.680295256177111027691508812736, 27.15017020464785967115465152473, 28.31448627272631787550000658775, 29.57687917801926278493397107326, 30.35755777662990623653154855528