L(s) = 1 | + (−0.961 + 0.276i)2-s + (−0.126 − 0.991i)3-s + (0.847 − 0.530i)4-s + (−0.929 − 0.368i)5-s + (0.395 + 0.918i)6-s + (−0.989 − 0.142i)7-s + (−0.668 + 0.744i)8-s + (−0.967 + 0.250i)9-s + (0.995 + 0.0974i)10-s + (−0.407 + 0.913i)11-s + (−0.633 − 0.773i)12-s + (−0.994 − 0.103i)13-s + (0.990 − 0.136i)14-s + (−0.247 + 0.968i)15-s + (0.436 − 0.899i)16-s + (0.811 − 0.584i)17-s + ⋯ |
L(s) = 1 | + (−0.961 + 0.276i)2-s + (−0.126 − 0.991i)3-s + (0.847 − 0.530i)4-s + (−0.929 − 0.368i)5-s + (0.395 + 0.918i)6-s + (−0.989 − 0.142i)7-s + (−0.668 + 0.744i)8-s + (−0.967 + 0.250i)9-s + (0.995 + 0.0974i)10-s + (−0.407 + 0.913i)11-s + (−0.633 − 0.773i)12-s + (−0.994 − 0.103i)13-s + (0.990 − 0.136i)14-s + (−0.247 + 0.968i)15-s + (0.436 − 0.899i)16-s + (0.811 − 0.584i)17-s + ⋯ |
Λ(s)=(=(967s/2ΓR(s+1)L(s)(−0.943−0.331i)Λ(1−s)
Λ(s)=(=(967s/2ΓR(s+1)L(s)(−0.943−0.331i)Λ(1−s)
Degree: |
1 |
Conductor: |
967
|
Sign: |
−0.943−0.331i
|
Analytic conductor: |
103.918 |
Root analytic conductor: |
103.918 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ967(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 967, (1: ), −0.943−0.331i)
|
Particular Values
L(21) |
≈ |
0.08239058748−0.4832057699i |
L(21) |
≈ |
0.08239058748−0.4832057699i |
L(1) |
≈ |
0.4354791097−0.1795350359i |
L(1) |
≈ |
0.4354791097−0.1795350359i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 967 | 1 |
good | 2 | 1+(−0.961+0.276i)T |
| 3 | 1+(−0.126−0.991i)T |
| 5 | 1+(−0.929−0.368i)T |
| 7 | 1+(−0.989−0.142i)T |
| 11 | 1+(−0.407+0.913i)T |
| 13 | 1+(−0.994−0.103i)T |
| 17 | 1+(0.811−0.584i)T |
| 19 | 1+(0.454−0.890i)T |
| 23 | 1+(0.260−0.965i)T |
| 29 | 1+(−0.981+0.193i)T |
| 31 | 1+(0.549−0.835i)T |
| 37 | 1+(0.851+0.525i)T |
| 41 | 1+(0.334−0.942i)T |
| 43 | 1+(0.992−0.123i)T |
| 47 | 1+(0.197+0.980i)T |
| 53 | 1+(0.803+0.595i)T |
| 59 | 1+(−0.982+0.187i)T |
| 61 | 1+(−0.648−0.761i)T |
| 67 | 1+(0.998−0.0585i)T |
| 71 | 1+(0.241+0.970i)T |
| 73 | 1+(0.803−0.595i)T |
| 79 | 1+(−0.401−0.915i)T |
| 83 | 1+(0.471−0.881i)T |
| 89 | 1+(−0.448+0.893i)T |
| 97 | 1+(−0.222−0.974i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.62381037723960165273399795466, −21.23779131373823019122792199093, −20.03767114336389910144927763533, −19.546495579804327496522183548778, −18.94948115370584472044950239510, −18.11281217768680914991907688824, −16.72328856960556151737918091612, −16.64190953959093179814315312243, −15.715732715400900829656613114991, −15.1755230369202913967623330792, −14.22689002722048873618304098126, −12.7610596224764195873082471655, −11.98183386580388206376879428042, −11.293903789898949549425411010096, −10.456995547925287206688572465015, −9.84069796107150823493058770200, −9.10055922465137982559024901892, −8.095168481880896112568039128387, −7.449401778003126318533572052933, −6.273032610074849809899190007563, −5.43544635935711226753177716003, −3.872750726450776811131998853566, −3.357782837807105221044933732218, −2.599535993845541071706104399029, −0.75046746610369619253366140159,
0.2806108068075089548449796541, 0.84067857997581021804583527239, 2.34599432783112172849312370795, 3.012061937734818113442756218417, 4.66825690810097333929965643137, 5.673464441590341622527839472375, 6.75099885381924575383700720551, 7.4978443747534637064684532996, 7.7016313870951158444301396891, 9.00273361817021837145227511416, 9.62215639769516406020899209570, 10.68172962666924532650263319064, 11.632119115476066225880813005494, 12.37214432967680462031083067036, 12.86062722212216360388156739366, 14.14324075172994096547255545478, 15.114965741946433626250432839589, 15.78208713548804716966458395859, 16.769174847955117312571765453098, 17.11674744941126618885943493433, 18.24059659534480739468332166958, 18.84956862543106818025443344360, 19.44581197941489838669789956878, 20.18773832241794071405082058921, 20.581358632323252085627621389291