L(s) = 1 | + (0.608 − 0.793i)2-s + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)4-s + (−0.0654 + 0.997i)5-s + (0.866 + 0.5i)6-s + (0.896 + 0.442i)7-s + (−0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.751 + 0.659i)10-s + (−0.793 + 0.608i)11-s + (0.923 − 0.382i)12-s + (−0.997 − 0.0654i)13-s + (0.896 − 0.442i)14-s + (−0.997 + 0.0654i)15-s + (−0.866 + 0.5i)16-s + (0.442 + 0.896i)17-s + ⋯ |
L(s) = 1 | + (0.608 − 0.793i)2-s + (0.130 + 0.991i)3-s + (−0.258 − 0.965i)4-s + (−0.0654 + 0.997i)5-s + (0.866 + 0.5i)6-s + (0.896 + 0.442i)7-s + (−0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.751 + 0.659i)10-s + (−0.793 + 0.608i)11-s + (0.923 − 0.382i)12-s + (−0.997 − 0.0654i)13-s + (0.896 − 0.442i)14-s + (−0.997 + 0.0654i)15-s + (−0.866 + 0.5i)16-s + (0.442 + 0.896i)17-s + ⋯ |
Λ(s)=(=(97s/2ΓR(s+1)L(s)(0.233+0.972i)Λ(1−s)
Λ(s)=(=(97s/2ΓR(s+1)L(s)(0.233+0.972i)Λ(1−s)
Degree: |
1 |
Conductor: |
97
|
Sign: |
0.233+0.972i
|
Analytic conductor: |
10.4240 |
Root analytic conductor: |
10.4240 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ97(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 97, (1: ), 0.233+0.972i)
|
Particular Values
L(21) |
≈ |
1.529545784+1.206181387i |
L(21) |
≈ |
1.529545784+1.206181387i |
L(1) |
≈ |
1.354721858+0.2752485214i |
L(1) |
≈ |
1.354721858+0.2752485214i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 97 | 1 |
good | 2 | 1+(0.608−0.793i)T |
| 3 | 1+(0.130+0.991i)T |
| 5 | 1+(−0.0654+0.997i)T |
| 7 | 1+(0.896+0.442i)T |
| 11 | 1+(−0.793+0.608i)T |
| 13 | 1+(−0.997−0.0654i)T |
| 17 | 1+(0.442+0.896i)T |
| 19 | 1+(0.831+0.555i)T |
| 23 | 1+(0.946+0.321i)T |
| 29 | 1+(−0.751+0.659i)T |
| 31 | 1+(0.991−0.130i)T |
| 37 | 1+(−0.321−0.946i)T |
| 41 | 1+(0.659+0.751i)T |
| 43 | 1+(0.965+0.258i)T |
| 47 | 1+(0.707−0.707i)T |
| 53 | 1+(−0.793−0.608i)T |
| 59 | 1+(−0.946+0.321i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(0.555−0.831i)T |
| 71 | 1+(0.659−0.751i)T |
| 73 | 1+(−0.258+0.965i)T |
| 79 | 1+(0.382−0.923i)T |
| 83 | 1+(−0.896+0.442i)T |
| 89 | 1+(0.923+0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.780357957305944145762943919535, −28.87624685827599311699420373568, −27.29528222365851020670794408515, −26.323869329550842036105619146792, −24.92191713724123788834605542827, −24.34732212435471267335732695269, −23.77417870534631886476994391522, −22.6528311256627722177306766257, −21.07038931922851310618014699358, −20.38359107446377488664986480130, −18.82448289213200568178162196640, −17.53288409651362028593690994, −16.90833422754556019110438906584, −15.588693086938930312462054093324, −14.16389721396309486019949595139, −13.49298326888822676792412667109, −12.40681836181625746652924853654, −11.4686286174920623003741994940, −9.093091454416495996309916253176, −7.92308418915151031132144429844, −7.307741091211754651955275453137, −5.57113748390261904982719789320, −4.71644775374173299957848643157, −2.74682330911218482113492033386, −0.699495166838195827506924087066,
2.20745007628904743352583622649, 3.31771715734725871586732941972, 4.73065202992696079635623046441, 5.68872180715199737843735589048, 7.71492473388655847404663150803, 9.457624123580063507858402651985, 10.43070328271705030543838288781, 11.22501107955230657511101644057, 12.40425147133683551243926267617, 14.13826052503343016297433583790, 14.82898683225956765711656520672, 15.51215088864588889281601746403, 17.439420903599889876418756235, 18.57261005874157891041576310609, 19.70926415026397790111798034912, 20.905915618386142619254205569561, 21.543567738379742033049477219649, 22.4914629943169438080659008492, 23.33986493936636231990842555331, 24.761160323901075903878558327082, 26.21900278985215669626883398211, 27.14324846506113402007266850301, 27.9856431258797512476739529752, 29.025091350616615986784021405097, 30.26152219733818279988588084534