Properties

Label 2-2888-152.69-c0-0-1
Degree $2$
Conductor $2888$
Sign $0.977 + 0.211i$
Analytic cond. $1.44129$
Root an. cond. $1.20054$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2888\)    =    \(2^{3} \cdot 19^{2}\)
Sign: $0.977 + 0.211i$
Analytic conductor: \(1.44129\)
Root analytic conductor: \(1.20054\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2888} (69, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2888,\ (\ :0),\ 0.977 + 0.211i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.033427268\)
\(L(\frac12)\) \(\approx\) \(1.033427268\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 \)
good3 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
5 \( 1 + (0.5 - 0.866i)T^{2} \)
7 \( 1 + T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
17 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - 2T + T^{2} \)
41 \( 1 + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (0.5 - 0.866i)T^{2} \)
47 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
59 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
71 \( 1 + (0.5 - 0.866i)T^{2} \)
73 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (0.5 - 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.215519605372393620171009883480, −8.328063825257339153129734589739, −7.86032402923715331889017733720, −6.68499963886323168403976282472, −5.86465715922682318028569953637, −4.65619553197791220842898295159, −3.87600628666576127716305014746, −3.26799955148338571750394874975, −2.58768711863928477175259881496, −1.01751438959657666433319557663, 1.01175264422348499062057227176, 2.14781118742825836518892415704, 3.26816237801106861672720167164, 4.40054473952292998152017747488, 5.36197487237039507766942809976, 6.31225363905851397677899504655, 6.81415880743202642409991221328, 7.40840189571551137987850192177, 8.144504080311415666994128250952, 8.811986002893230565674364579946

Graph of the $Z$-function along the critical line