L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯ |
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.977+0.211i)Λ(1−s)
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.977+0.211i)Λ(1−s)
Degree: |
2 |
Conductor: |
2888
= 23⋅192
|
Sign: |
0.977+0.211i
|
Analytic conductor: |
1.44129 |
Root analytic conductor: |
1.20054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2888(69,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2888, ( :0), 0.977+0.211i)
|
Particular Values
L(21) |
≈ |
1.033427268 |
L(21) |
≈ |
1.033427268 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 19 | 1 |
good | 3 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 7 | 1+T+T2 |
| 11 | 1−T2 |
| 13 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1−2T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.215519605372393620171009883480, −8.328063825257339153129734589739, −7.86032402923715331889017733720, −6.68499963886323168403976282472, −5.86465715922682318028569953637, −4.65619553197791220842898295159, −3.87600628666576127716305014746, −3.26799955148338571750394874975, −2.58768711863928477175259881496, −1.01751438959657666433319557663,
1.01175264422348499062057227176, 2.14781118742825836518892415704, 3.26816237801106861672720167164, 4.40054473952292998152017747488, 5.36197487237039507766942809976, 6.31225363905851397677899504655, 6.81415880743202642409991221328, 7.40840189571551137987850192177, 8.144504080311415666994128250952, 8.811986002893230565674364579946