L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s − 0.999·12-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)24-s + (−0.5 + 0.866i)25-s − 0.999·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.033427268\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.033427268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.215519605372393620171009883480, −8.328063825257339153129734589739, −7.86032402923715331889017733720, −6.68499963886323168403976282472, −5.86465715922682318028569953637, −4.65619553197791220842898295159, −3.87600628666576127716305014746, −3.26799955148338571750394874975, −2.58768711863928477175259881496, −1.01751438959657666433319557663,
1.01175264422348499062057227176, 2.14781118742825836518892415704, 3.26816237801106861672720167164, 4.40054473952292998152017747488, 5.36197487237039507766942809976, 6.31225363905851397677899504655, 6.81415880743202642409991221328, 7.40840189571551137987850192177, 8.144504080311415666994128250952, 8.811986002893230565674364579946