Properties

Label 2-3104-776.387-c0-0-2
Degree $2$
Conductor $3104$
Sign $1$
Analytic cond. $1.54909$
Root an. cond. $1.24462$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 2·11-s − 25-s − 4·27-s − 4·33-s + 2·43-s − 49-s + 2·73-s + 2·75-s + 5·81-s + 2·89-s − 97-s + 6·99-s − 2·113-s + ⋯
L(s)  = 1  − 2·3-s + 3·9-s + 2·11-s − 25-s − 4·27-s − 4·33-s + 2·43-s − 49-s + 2·73-s + 2·75-s + 5·81-s + 2·89-s − 97-s + 6·99-s − 2·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3104\)    =    \(2^{5} \cdot 97\)
Sign: $1$
Analytic conductor: \(1.54909\)
Root analytic conductor: \(1.24462\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3104} (1551, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3104,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7326428344\)
\(L(\frac12)\) \(\approx\) \(0.7326428344\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
97 \( 1 + T \)
good3 \( ( 1 + T )^{2} \)
5 \( 1 + T^{2} \)
7 \( 1 + T^{2} \)
11 \( ( 1 - T )^{2} \)
13 \( 1 + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T^{2} \)
29 \( 1 + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( 1 + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T^{2} \)
73 \( ( 1 - T )^{2} \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.255874018551348337528311775189, −7.893489238762200979539607820241, −7.06115328162750344908809603583, −6.43401795021535655672051417549, −5.99141578892825643683592848820, −5.15927237590950332516995469464, −4.26770196557990579924853749054, −3.77939370721966531821688201664, −1.83114780771423429976051365027, −0.903292677299414520212335415425, 0.903292677299414520212335415425, 1.83114780771423429976051365027, 3.77939370721966531821688201664, 4.26770196557990579924853749054, 5.15927237590950332516995469464, 5.99141578892825643683592848820, 6.43401795021535655672051417549, 7.06115328162750344908809603583, 7.893489238762200979539607820241, 9.255874018551348337528311775189

Graph of the $Z$-function along the critical line