L(s) = 1 | + 5-s − 9-s + 25-s − 2·29-s − 2·41-s − 45-s − 49-s + 2·61-s + 81-s + 2·89-s − 2·101-s + 2·109-s + ⋯ |
L(s) = 1 | + 5-s − 9-s + 25-s − 2·29-s − 2·41-s − 45-s − 49-s + 2·61-s + 81-s + 2·89-s − 2·101-s + 2·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8504405167\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8504405167\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 3 | \( 1 + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 + T )^{2} \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 + T )^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75260967574454195731534848000, −10.95046023710483770264634399978, −9.939604888849185529889975447605, −9.118094868217868109134717580806, −8.223299900747954342820438618786, −6.91232893156724944378745473872, −5.87928792951245296487148572258, −5.09929721695917834043957298071, −3.39936575199064474259124641699, −2.03689211445596801495590541896,
2.03689211445596801495590541896, 3.39936575199064474259124641699, 5.09929721695917834043957298071, 5.87928792951245296487148572258, 6.91232893156724944378745473872, 8.223299900747954342820438618786, 9.118094868217868109134717580806, 9.939604888849185529889975447605, 10.95046023710483770264634399978, 11.75260967574454195731534848000