L(s) = 1 | + 2-s + 4-s + 1.41·5-s + 8-s + 1.41·10-s − 1.41·13-s + 16-s − 1.41·17-s + 1.41·20-s + 1.00·25-s − 1.41·26-s − 2·29-s + 32-s − 1.41·34-s + 1.41·40-s − 1.41·41-s + 1.00·50-s − 1.41·52-s − 2·58-s + 1.41·61-s + 64-s − 2.00·65-s − 1.41·68-s + 1.41·73-s + 1.41·80-s − 1.41·82-s − 2.00·85-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 1.41·5-s + 8-s + 1.41·10-s − 1.41·13-s + 16-s − 1.41·17-s + 1.41·20-s + 1.00·25-s − 1.41·26-s − 2·29-s + 32-s − 1.41·34-s + 1.41·40-s − 1.41·41-s + 1.00·50-s − 1.41·52-s − 2·58-s + 1.41·61-s + 64-s − 2.00·65-s − 1.41·68-s + 1.41·73-s + 1.41·80-s − 1.41·82-s − 2.00·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.470754300\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.470754300\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 1.41T + T^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.41T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41T + T^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.659383482076321123103911949970, −8.845207762284210828230873090792, −7.60420758735182749836449887121, −6.86504228984014016252219503405, −6.18460956923895546934513110706, −5.31451908067224196334220458268, −4.79943829362728001219307872881, −3.63332251567808974695681433885, −2.36291571661188020919983003193, −1.94540061496984898281872094842,
1.94540061496984898281872094842, 2.36291571661188020919983003193, 3.63332251567808974695681433885, 4.79943829362728001219307872881, 5.31451908067224196334220458268, 6.18460956923895546934513110706, 6.86504228984014016252219503405, 7.60420758735182749836449887121, 8.845207762284210828230873090792, 9.659383482076321123103911949970