L(s) = 1 | + 2-s + 4-s − 4·5-s + 7-s − 9-s − 4·10-s + 14-s − 18-s + 19-s − 4·20-s + 6·25-s + 28-s − 32-s − 4·35-s − 36-s + 38-s + 41-s + 4·45-s − 2·47-s + 49-s + 6·50-s + 59-s − 63-s − 64-s + 8·67-s − 4·70-s + 71-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 4·5-s + 7-s − 9-s − 4·10-s + 14-s − 18-s + 19-s − 4·20-s + 6·25-s + 28-s − 32-s − 4·35-s − 36-s + 38-s + 41-s + 4·45-s − 2·47-s + 49-s + 6·50-s + 59-s − 63-s − 64-s + 8·67-s − 4·70-s + 71-s + ⋯ |
Λ(s)=(=((318)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((318)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
318
|
Sign: |
1
|
Analytic conductor: |
0.0529080 |
Root analytic conductor: |
0.692532 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 318, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.6389026399 |
L(21) |
≈ |
0.6389026399 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 31 | | 1 |
good | 2 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 3 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 5 | C2 | (1+T+T2)4 |
| 7 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 11 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 13 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 17 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 19 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 23 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 29 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 37 | C1×C1 | (1−T)4(1+T)4 |
| 41 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 43 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 47 | C4 | (1+T+T2+T3+T4)2 |
| 53 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 59 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 61 | C1×C1 | (1−T)4(1+T)4 |
| 67 | C1 | (1−T)8 |
| 71 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
| 73 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 79 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 83 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 89 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 97 | C4×C2 | 1−T+T3−T4+T5−T7+T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.39745140265450717735596783736, −7.36202380002155801657416394872, −7.03021885067196271822906544245, −6.74687668537547120398363177976, −6.58543501692979862242916410041, −6.39132316265927062708174563964, −5.90119211391729129107191851526, −5.61640950188835646776086368368, −5.58962474294699969164112923343, −5.38459402420678534271156286873, −4.92070586494791923869689276324, −4.74563035446808683017939455733, −4.70309477190647836673756099552, −4.15823935514117878179352947406, −3.99992463075727683850497885626, −3.91402161414175759583179288958, −3.41600072498515458727613160522, −3.40132014597364513401999463594, −3.38262884136449105992825694290, −3.07408450536182380060690743409, −2.22380342541582270248557549973, −2.18994136627161153429654453173, −2.12279685446713081119735335241, −0.990534801976033516665361488151, −0.67741350491287073570256142602,
0.67741350491287073570256142602, 0.990534801976033516665361488151, 2.12279685446713081119735335241, 2.18994136627161153429654453173, 2.22380342541582270248557549973, 3.07408450536182380060690743409, 3.38262884136449105992825694290, 3.40132014597364513401999463594, 3.41600072498515458727613160522, 3.91402161414175759583179288958, 3.99992463075727683850497885626, 4.15823935514117878179352947406, 4.70309477190647836673756099552, 4.74563035446808683017939455733, 4.92070586494791923869689276324, 5.38459402420678534271156286873, 5.58962474294699969164112923343, 5.61640950188835646776086368368, 5.90119211391729129107191851526, 6.39132316265927062708174563964, 6.58543501692979862242916410041, 6.74687668537547120398363177976, 7.03021885067196271822906544245, 7.36202380002155801657416394872, 7.39745140265450717735596783736