Properties

Label 4-2695275-1.1-c1e2-0-48
Degree $4$
Conductor $2695275$
Sign $-1$
Analytic cond. $171.853$
Root an. cond. $3.62067$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·4-s + 9-s + 11-s + 2·12-s − 10·23-s + 25-s + 27-s − 5·31-s + 33-s + 2·36-s − 2·37-s + 2·44-s − 8·47-s + 49-s + 4·59-s − 8·64-s − 8·67-s − 10·69-s + 18·71-s + 75-s + 81-s − 14·89-s − 20·92-s − 5·93-s + 14·97-s + 99-s + ⋯
L(s)  = 1  + 0.577·3-s + 4-s + 1/3·9-s + 0.301·11-s + 0.577·12-s − 2.08·23-s + 1/5·25-s + 0.192·27-s − 0.898·31-s + 0.174·33-s + 1/3·36-s − 0.328·37-s + 0.301·44-s − 1.16·47-s + 1/7·49-s + 0.520·59-s − 64-s − 0.977·67-s − 1.20·69-s + 2.13·71-s + 0.115·75-s + 1/9·81-s − 1.48·89-s − 2.08·92-s − 0.518·93-s + 1.42·97-s + 0.100·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2695275\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(171.853\)
Root analytic conductor: \(3.62067\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2695275,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$ \( 1 - T \)
good2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
53$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 51 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30661797541290821455696261649, −7.03189212108301260064437659817, −6.63216653749155622423965381578, −6.23404778308086977014137472094, −5.79202265149903668260362805735, −5.40844333678785302124910491259, −4.70329769108401126404570380961, −4.34563034217913995952762795991, −3.70093089349896061706983027467, −3.45992144781733985221268658583, −2.79639644855330517507098304064, −2.15293534837809612550077905006, −1.96819885237805176422041671183, −1.24271455357801539190571875522, 0, 1.24271455357801539190571875522, 1.96819885237805176422041671183, 2.15293534837809612550077905006, 2.79639644855330517507098304064, 3.45992144781733985221268658583, 3.70093089349896061706983027467, 4.34563034217913995952762795991, 4.70329769108401126404570380961, 5.40844333678785302124910491259, 5.79202265149903668260362805735, 6.23404778308086977014137472094, 6.63216653749155622423965381578, 7.03189212108301260064437659817, 7.30661797541290821455696261649

Graph of the $Z$-function along the critical line