L(s) = 1 | + 3-s + 2·4-s + 9-s + 11-s + 2·12-s − 10·23-s + 25-s + 27-s − 5·31-s + 33-s + 2·36-s − 2·37-s + 2·44-s − 8·47-s + 49-s + 4·59-s − 8·64-s − 8·67-s − 10·69-s + 18·71-s + 75-s + 81-s − 14·89-s − 20·92-s − 5·93-s + 14·97-s + 99-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 4-s + 1/3·9-s + 0.301·11-s + 0.577·12-s − 2.08·23-s + 1/5·25-s + 0.192·27-s − 0.898·31-s + 0.174·33-s + 1/3·36-s − 0.328·37-s + 0.301·44-s − 1.16·47-s + 1/7·49-s + 0.520·59-s − 64-s − 0.977·67-s − 1.20·69-s + 2.13·71-s + 0.115·75-s + 1/9·81-s − 1.48·89-s − 2.08·92-s − 0.518·93-s + 1.42·97-s + 0.100·99-s + ⋯ |
Λ(s)=(=(2695275s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(2695275s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
2695275
= 34⋅52⋅113
|
Sign: |
−1
|
Analytic conductor: |
171.853 |
Root analytic conductor: |
3.62067 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 2695275, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1−T |
| 5 | C1×C1 | (1−T)(1+T) |
| 11 | C1 | 1−T |
good | 2 | C22 | 1−pT2+p2T4 |
| 7 | C22 | 1−T2+p2T4 |
| 13 | C22 | 1+11T2+p2T4 |
| 17 | C22 | 1+13T2+p2T4 |
| 19 | C22 | 1+5T2+p2T4 |
| 23 | C2×C2 | (1+T+pT2)(1+9T+pT2) |
| 29 | C22 | 1+25T2+p2T4 |
| 31 | C2×C2 | (1+pT2)(1+5T+pT2) |
| 37 | C2×C2 | (1−6T+pT2)(1+8T+pT2) |
| 41 | C22 | 1+74T2+p2T4 |
| 43 | C22 | 1−29T2+p2T4 |
| 47 | C2×C2 | (1+T+pT2)(1+7T+pT2) |
| 53 | C2 | (1−T+pT2)(1+T+pT2) |
| 59 | C2×C2 | (1−14T+pT2)(1+10T+pT2) |
| 61 | C22 | 1−65T2+p2T4 |
| 67 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 73 | C22 | 1−9T2+p2T4 |
| 79 | C22 | 1−15T2+p2T4 |
| 83 | C22 | 1+51T2+p2T4 |
| 89 | C2×C2 | (1+pT2)(1+14T+pT2) |
| 97 | C2×C2 | (1−12T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.30661797541290821455696261649, −7.03189212108301260064437659817, −6.63216653749155622423965381578, −6.23404778308086977014137472094, −5.79202265149903668260362805735, −5.40844333678785302124910491259, −4.70329769108401126404570380961, −4.34563034217913995952762795991, −3.70093089349896061706983027467, −3.45992144781733985221268658583, −2.79639644855330517507098304064, −2.15293534837809612550077905006, −1.96819885237805176422041671183, −1.24271455357801539190571875522, 0,
1.24271455357801539190571875522, 1.96819885237805176422041671183, 2.15293534837809612550077905006, 2.79639644855330517507098304064, 3.45992144781733985221268658583, 3.70093089349896061706983027467, 4.34563034217913995952762795991, 4.70329769108401126404570380961, 5.40844333678785302124910491259, 5.79202265149903668260362805735, 6.23404778308086977014137472094, 6.63216653749155622423965381578, 7.03189212108301260064437659817, 7.30661797541290821455696261649