L(s) = 1 | + 2·4-s + 4·7-s + 7·13-s − 2·19-s + 5·25-s + 8·28-s − 11·31-s − 20·37-s − 5·43-s + 7·49-s + 14·52-s + 61-s − 8·64-s − 5·67-s − 14·73-s − 4·76-s + 13·79-s + 28·91-s − 5·97-s + 10·100-s + 13·103-s − 38·109-s + 11·121-s − 22·124-s + 127-s + 131-s − 8·133-s + ⋯ |
L(s) = 1 | + 4-s + 1.51·7-s + 1.94·13-s − 0.458·19-s + 25-s + 1.51·28-s − 1.97·31-s − 3.28·37-s − 0.762·43-s + 49-s + 1.94·52-s + 0.128·61-s − 64-s − 0.610·67-s − 1.63·73-s − 0.458·76-s + 1.46·79-s + 2.93·91-s − 0.507·97-s + 100-s + 1.28·103-s − 3.63·109-s + 121-s − 1.97·124-s + 0.0887·127-s + 0.0873·131-s − 0.693·133-s + ⋯ |
Λ(s)=(=(59049s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(59049s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
59049
= 310
|
Sign: |
1
|
Analytic conductor: |
3.76501 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 59049, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.163989186 |
L(21) |
≈ |
2.163989186 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
good | 2 | C22 | 1−pT2+p2T4 |
| 5 | C22 | 1−pT2+p2T4 |
| 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C2 | (1−5T+pT2)(1−2T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1+4T+pT2)(1+7T+pT2) |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−8T+pT2)(1+13T+pT2) |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C2 | (1−14T+pT2)(1+13T+pT2) |
| 67 | C2 | (1−11T+pT2)(1+16T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+7T+pT2)2 |
| 79 | C2 | (1−17T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−pT2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97176877688928411767925748799, −11.96324524829119598033844710065, −11.24056823535085208879544823194, −10.96096379134801597032705417011, −10.56037986866456853977201504282, −10.41906286223794603794670020728, −9.088340175494034891205275362919, −9.032681696819044858699813405982, −8.305379320250581603205108826742, −8.123564695784635754761888175223, −7.20965693379886886712998282992, −6.94654208274578141535972637128, −6.39529797301599778835698702081, −5.61645945366736046919660453916, −5.25867214836061762996343017701, −4.47899069305727190389317624933, −3.72171311063105546675373390782, −3.10820885202341447541150209339, −1.83508433814506093189173428511, −1.61416762214392151984078775814,
1.61416762214392151984078775814, 1.83508433814506093189173428511, 3.10820885202341447541150209339, 3.72171311063105546675373390782, 4.47899069305727190389317624933, 5.25867214836061762996343017701, 5.61645945366736046919660453916, 6.39529797301599778835698702081, 6.94654208274578141535972637128, 7.20965693379886886712998282992, 8.123564695784635754761888175223, 8.305379320250581603205108826742, 9.032681696819044858699813405982, 9.088340175494034891205275362919, 10.41906286223794603794670020728, 10.56037986866456853977201504282, 10.96096379134801597032705417011, 11.24056823535085208879544823194, 11.96324524829119598033844710065, 11.97176877688928411767925748799