L(s) = 1 | − 7-s − 13-s − 2·19-s − 6·25-s + 4·37-s − 43-s − 49-s + 7·61-s + 9·67-s + 6·79-s + 91-s − 17·97-s + 10·103-s + 24·109-s − 19·121-s + 127-s + 131-s + 2·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 0.277·13-s − 0.458·19-s − 6/5·25-s + 0.657·37-s − 0.152·43-s − 1/7·49-s + 0.896·61-s + 1.09·67-s + 0.675·79-s + 0.104·91-s − 1.72·97-s + 0.985·103-s + 2.29·109-s − 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.173·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
−1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 876096, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C2 | 1+T+pT2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2×C2 | (1−3T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+19T2+p2T4 |
| 17 | C22 | 1−T2+p2T4 |
| 19 | C2×C2 | (1−3T+pT2)(1+5T+pT2) |
| 23 | C22 | 1+25T2+p2T4 |
| 29 | C22 | 1+43T2+p2T4 |
| 31 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 37 | C2×C2 | (1−3T+pT2)(1−T+pT2) |
| 41 | C22 | 1−7T2+p2T4 |
| 43 | C2×C2 | (1+pT2)(1+T+pT2) |
| 47 | C22 | 1+18T2+p2T4 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C22 | 1−29T2+p2T4 |
| 61 | C2×C2 | (1−5T+pT2)(1−2T+pT2) |
| 67 | C2×C2 | (1−8T+pT2)(1−T+pT2) |
| 71 | C22 | 1+103T2+p2T4 |
| 73 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 79 | C2 | (1−3T+pT2)2 |
| 83 | C22 | 1−86T2+p2T4 |
| 89 | C22 | 1+41T2+p2T4 |
| 97 | C2×C2 | (1−2T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.983737791080642132736814215363, −7.51854729411584168731948285343, −7.15093699372760938755876813366, −6.55607214421904824418352370269, −6.26234494744199123553130424064, −5.76162824470031636265799774780, −5.27296627730458637660873384431, −4.77234832397501308317155493789, −4.19694773271514163854185346296, −3.74019924531454921592039403196, −3.24290860878429919236845747336, −2.44900145190196715396620308329, −2.08417146527956992185093097602, −1.10282936938978031774324225005, 0,
1.10282936938978031774324225005, 2.08417146527956992185093097602, 2.44900145190196715396620308329, 3.24290860878429919236845747336, 3.74019924531454921592039403196, 4.19694773271514163854185346296, 4.77234832397501308317155493789, 5.27296627730458637660873384431, 5.76162824470031636265799774780, 6.26234494744199123553130424064, 6.55607214421904824418352370269, 7.15093699372760938755876813366, 7.51854729411584168731948285343, 7.983737791080642132736814215363