L(s) = 1 | − 7-s − 13-s − 2·19-s − 6·25-s + 4·37-s − 43-s − 49-s + 7·61-s + 9·67-s + 6·79-s + 91-s − 17·97-s + 10·103-s + 24·109-s − 19·121-s + 127-s + 131-s + 2·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 0.277·13-s − 0.458·19-s − 6/5·25-s + 0.657·37-s − 0.152·43-s − 1/7·49-s + 0.896·61-s + 1.09·67-s + 0.675·79-s + 0.104·91-s − 1.72·97-s + 0.985·103-s + 2.29·109-s − 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.173·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 13 | $C_2$ | \( 1 + T + p T^{2} \) |
good | 5 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 7 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 + 19 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 + 25 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 43 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 - 7 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 + 18 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 - 29 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 + 103 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 86 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 41 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 19 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.983737791080642132736814215363, −7.51854729411584168731948285343, −7.15093699372760938755876813366, −6.55607214421904824418352370269, −6.26234494744199123553130424064, −5.76162824470031636265799774780, −5.27296627730458637660873384431, −4.77234832397501308317155493789, −4.19694773271514163854185346296, −3.74019924531454921592039403196, −3.24290860878429919236845747336, −2.44900145190196715396620308329, −2.08417146527956992185093097602, −1.10282936938978031774324225005, 0,
1.10282936938978031774324225005, 2.08417146527956992185093097602, 2.44900145190196715396620308329, 3.24290860878429919236845747336, 3.74019924531454921592039403196, 4.19694773271514163854185346296, 4.77234832397501308317155493789, 5.27296627730458637660873384431, 5.76162824470031636265799774780, 6.26234494744199123553130424064, 6.55607214421904824418352370269, 7.15093699372760938755876813366, 7.51854729411584168731948285343, 7.983737791080642132736814215363