L(s) = 1 | + 4·7-s − 2·13-s − 4·19-s − 6·25-s + 4·31-s − 20·37-s + 16·43-s − 2·49-s − 12·61-s − 12·67-s − 4·73-s + 24·79-s − 8·91-s − 20·97-s + 8·103-s + 20·109-s − 6·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 0.554·13-s − 0.917·19-s − 6/5·25-s + 0.718·31-s − 3.28·37-s + 2.43·43-s − 2/7·49-s − 1.53·61-s − 1.46·67-s − 0.468·73-s + 2.70·79-s − 0.838·91-s − 2.03·97-s + 0.788·103-s + 1.91·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
−1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 876096, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1+6T+pT2)2 |
| 67 | C2 | (1+6T+pT2)2 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.917819582253129208914516956622, −7.44699838933626723226640796085, −7.40568873395535407748018257450, −6.61084334022363680034133660955, −6.16078101072896661105492972029, −5.73335318755003699286776095361, −5.08169261977535984530512865091, −4.82890466759038882574961362490, −4.35999893307754658375735542809, −3.80548435074655755032944611187, −3.20854141442725326453087823255, −2.36222722805652747794129158747, −1.93418903533460519772261561653, −1.32780807021178389715142739482, 0,
1.32780807021178389715142739482, 1.93418903533460519772261561653, 2.36222722805652747794129158747, 3.20854141442725326453087823255, 3.80548435074655755032944611187, 4.35999893307754658375735542809, 4.82890466759038882574961362490, 5.08169261977535984530512865091, 5.73335318755003699286776095361, 6.16078101072896661105492972029, 6.61084334022363680034133660955, 7.40568873395535407748018257450, 7.44699838933626723226640796085, 7.917819582253129208914516956622