Properties

Label 4-288000-1.1-c1e2-0-21
Degree $4$
Conductor $288000$
Sign $-1$
Analytic cond. $18.3631$
Root an. cond. $2.07007$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 9-s + 25-s − 12·29-s − 20·41-s − 45-s − 2·49-s − 12·61-s + 81-s + 4·89-s − 28·101-s + 20·109-s − 22·121-s + 125-s + 127-s + 131-s + 137-s + 139-s − 12·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 0.447·5-s − 1/3·9-s + 1/5·25-s − 2.22·29-s − 3.12·41-s − 0.149·45-s − 2/7·49-s − 1.53·61-s + 1/9·81-s + 0.423·89-s − 2.78·101-s + 1.91·109-s − 2·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.996·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(288000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(18.3631\)
Root analytic conductor: \(2.07007\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 288000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5$C_1$ \( 1 - T \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651398621157294016754784166904, −8.177011345230851378990633313291, −7.71733313943630569596593201575, −7.20437669814029042430609930443, −6.68180261171334745171727340894, −6.30690797191976477769025407425, −5.57771460248008481046830603443, −5.37353169568061066443481917418, −4.77118490049532217723449569095, −4.07093718664689551191991169282, −3.44839557200100878301137886825, −2.97418651820743721837781579798, −2.04012192925769453409315274550, −1.53830675039595379013924667510, 0, 1.53830675039595379013924667510, 2.04012192925769453409315274550, 2.97418651820743721837781579798, 3.44839557200100878301137886825, 4.07093718664689551191991169282, 4.77118490049532217723449569095, 5.37353169568061066443481917418, 5.57771460248008481046830603443, 6.30690797191976477769025407425, 6.68180261171334745171727340894, 7.20437669814029042430609930443, 7.71733313943630569596593201575, 8.177011345230851378990633313291, 8.651398621157294016754784166904

Graph of the $Z$-function along the critical line