L(s) = 1 | + 5-s − 9-s + 25-s − 12·29-s − 20·41-s − 45-s − 2·49-s − 12·61-s + 81-s + 4·89-s − 28·101-s + 20·109-s − 22·121-s + 125-s + 127-s + 131-s + 137-s + 139-s − 12·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1/3·9-s + 1/5·25-s − 2.22·29-s − 3.12·41-s − 0.149·45-s − 2/7·49-s − 1.53·61-s + 1/9·81-s + 0.423·89-s − 2.78·101-s + 1.91·109-s − 2·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.996·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(288000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(288000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
288000
= 28⋅32⋅53
|
Sign: |
−1
|
Analytic conductor: |
18.3631 |
Root analytic conductor: |
2.07007 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 288000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C1 | 1−T |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1+18T2+p2T4 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+6T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.651398621157294016754784166904, −8.177011345230851378990633313291, −7.71733313943630569596593201575, −7.20437669814029042430609930443, −6.68180261171334745171727340894, −6.30690797191976477769025407425, −5.57771460248008481046830603443, −5.37353169568061066443481917418, −4.77118490049532217723449569095, −4.07093718664689551191991169282, −3.44839557200100878301137886825, −2.97418651820743721837781579798, −2.04012192925769453409315274550, −1.53830675039595379013924667510, 0,
1.53830675039595379013924667510, 2.04012192925769453409315274550, 2.97418651820743721837781579798, 3.44839557200100878301137886825, 4.07093718664689551191991169282, 4.77118490049532217723449569095, 5.37353169568061066443481917418, 5.57771460248008481046830603443, 6.30690797191976477769025407425, 6.68180261171334745171727340894, 7.20437669814029042430609930443, 7.71733313943630569596593201575, 8.177011345230851378990633313291, 8.651398621157294016754784166904