L(s) = 1 | + 5-s + 2·9-s + 25-s + 12·29-s − 12·41-s + 2·45-s + 10·49-s − 4·61-s − 5·81-s − 12·89-s + 12·101-s − 4·109-s − 22·121-s + 125-s + 127-s + 131-s + 137-s + 139-s + 12·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 2/3·9-s + 1/5·25-s + 2.22·29-s − 1.87·41-s + 0.298·45-s + 10/7·49-s − 0.512·61-s − 5/9·81-s − 1.27·89-s + 1.19·101-s − 0.383·109-s − 2·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.996·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(32000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(32000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
32000
= 28⋅53
|
Sign: |
1
|
Analytic conductor: |
2.04034 |
Root analytic conductor: |
1.19515 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 32000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.436247851 |
L(21) |
≈ |
1.436247851 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | 1−T |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1+14T2+p2T4 |
| 47 | C22 | 1−58T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33788580631742990536902027000, −10.05879041470947803793456960886, −9.522648273985201214197269118626, −8.796884726322918039678921570591, −8.479565110616274416699778327122, −7.81615254862260954513085168025, −7.10947840203714705149389544521, −6.69688321114788058924654444075, −6.13072415585895077395132843521, −5.37979552590376931141997700211, −4.77253387895635684692535129760, −4.16626097376329934356101731495, −3.25546128645228249942275343375, −2.42787059732878662273347800550, −1.31802743791612034341244693514,
1.31802743791612034341244693514, 2.42787059732878662273347800550, 3.25546128645228249942275343375, 4.16626097376329934356101731495, 4.77253387895635684692535129760, 5.37979552590376931141997700211, 6.13072415585895077395132843521, 6.69688321114788058924654444075, 7.10947840203714705149389544521, 7.81615254862260954513085168025, 8.479565110616274416699778327122, 8.796884726322918039678921570591, 9.522648273985201214197269118626, 10.05879041470947803793456960886, 10.33788580631742990536902027000