Properties

Label 4-1040e2-1.1-c1e2-0-68
Degree $4$
Conductor $1081600$
Sign $-1$
Analytic cond. $68.9637$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·9-s − 2·13-s − 12·17-s + 3·25-s + 12·29-s + 12·37-s − 4·45-s − 14·49-s + 4·61-s − 4·65-s + 12·73-s − 5·81-s − 24·85-s + 12·97-s − 12·101-s − 12·109-s + 12·113-s + 4·117-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + ⋯
L(s)  = 1  + 0.894·5-s − 2/3·9-s − 0.554·13-s − 2.91·17-s + 3/5·25-s + 2.22·29-s + 1.97·37-s − 0.596·45-s − 2·49-s + 0.512·61-s − 0.496·65-s + 1.40·73-s − 5/9·81-s − 2.60·85-s + 1.21·97-s − 1.19·101-s − 1.14·109-s + 1.12·113-s + 0.369·117-s − 0.181·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1081600\)    =    \(2^{8} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(68.9637\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1081600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.966862383928881440655003735798, −7.39561199172765762009000013654, −6.73995582562381215551096178888, −6.46742372621991259230744798085, −6.32109088978854006350933074639, −5.71507515611670657325866245969, −5.03296562316088723460478207873, −4.68458332219322885087778524106, −4.43452672417510618546752868321, −3.66150609202387737964609502783, −2.80671211665565191776068265997, −2.51085196410167359218461980453, −2.11080508643635329880349152676, −1.13162970259400932412634941868, 0, 1.13162970259400932412634941868, 2.11080508643635329880349152676, 2.51085196410167359218461980453, 2.80671211665565191776068265997, 3.66150609202387737964609502783, 4.43452672417510618546752868321, 4.68458332219322885087778524106, 5.03296562316088723460478207873, 5.71507515611670657325866245969, 6.32109088978854006350933074639, 6.46742372621991259230744798085, 6.73995582562381215551096178888, 7.39561199172765762009000013654, 7.966862383928881440655003735798

Graph of the $Z$-function along the critical line