Properties

Label 4-1134e2-1.1-c1e2-0-44
Degree $4$
Conductor $1285956$
Sign $-1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·7-s − 4·8-s + 8·14-s + 5·16-s − 25-s − 12·28-s + 18·29-s − 6·32-s − 2·37-s + 16·43-s + 9·49-s + 2·50-s − 12·53-s + 16·56-s − 36·58-s + 7·64-s − 8·67-s − 24·71-s + 4·74-s − 32·79-s − 32·86-s − 18·98-s − 3·100-s + 24·106-s + 24·107-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.51·7-s − 1.41·8-s + 2.13·14-s + 5/4·16-s − 1/5·25-s − 2.26·28-s + 3.34·29-s − 1.06·32-s − 0.328·37-s + 2.43·43-s + 9/7·49-s + 0.282·50-s − 1.64·53-s + 2.13·56-s − 4.72·58-s + 7/8·64-s − 0.977·67-s − 2.84·71-s + 0.464·74-s − 3.60·79-s − 3.45·86-s − 1.81·98-s − 0.299·100-s + 2.33·106-s + 2.32·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83804568267963926704994118011, −7.23037692302101024142168718583, −7.16277862972928710155421440227, −6.39717818377493347523565938673, −6.29261335708839240986736404399, −5.90045021115349717827393199661, −5.27862826325532129316709233362, −4.37202457039453886575368172384, −4.25638665319375785757127060430, −3.16355858187330818291475189494, −2.94651413139897301734292877776, −2.59312842582062058372859748021, −1.58788487890578855994666762814, −0.901297860986010122087650764417, 0, 0.901297860986010122087650764417, 1.58788487890578855994666762814, 2.59312842582062058372859748021, 2.94651413139897301734292877776, 3.16355858187330818291475189494, 4.25638665319375785757127060430, 4.37202457039453886575368172384, 5.27862826325532129316709233362, 5.90045021115349717827393199661, 6.29261335708839240986736404399, 6.39717818377493347523565938673, 7.16277862972928710155421440227, 7.23037692302101024142168718583, 7.83804568267963926704994118011

Graph of the $Z$-function along the critical line