L(s) = 1 | − 2·2-s + 3·4-s − 4·7-s − 4·8-s + 8·14-s + 5·16-s − 25-s − 12·28-s + 18·29-s − 6·32-s − 2·37-s + 16·43-s + 9·49-s + 2·50-s − 12·53-s + 16·56-s − 36·58-s + 7·64-s − 8·67-s − 24·71-s + 4·74-s − 32·79-s − 32·86-s − 18·98-s − 3·100-s + 24·106-s + 24·107-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.51·7-s − 1.41·8-s + 2.13·14-s + 5/4·16-s − 1/5·25-s − 2.26·28-s + 3.34·29-s − 1.06·32-s − 0.328·37-s + 2.43·43-s + 9/7·49-s + 0.282·50-s − 1.64·53-s + 2.13·56-s − 4.72·58-s + 7/8·64-s − 0.977·67-s − 2.84·71-s + 0.464·74-s − 3.60·79-s − 3.45·86-s − 1.81·98-s − 0.299·100-s + 2.33·106-s + 2.32·107-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
−1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | C2 | 1+4T+pT2 |
good | 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−T+pT2)(1+T+pT2) |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−9T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−T+pT2)(1+T+pT2) |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83804568267963926704994118011, −7.23037692302101024142168718583, −7.16277862972928710155421440227, −6.39717818377493347523565938673, −6.29261335708839240986736404399, −5.90045021115349717827393199661, −5.27862826325532129316709233362, −4.37202457039453886575368172384, −4.25638665319375785757127060430, −3.16355858187330818291475189494, −2.94651413139897301734292877776, −2.59312842582062058372859748021, −1.58788487890578855994666762814, −0.901297860986010122087650764417, 0,
0.901297860986010122087650764417, 1.58788487890578855994666762814, 2.59312842582062058372859748021, 2.94651413139897301734292877776, 3.16355858187330818291475189494, 4.25638665319375785757127060430, 4.37202457039453886575368172384, 5.27862826325532129316709233362, 5.90045021115349717827393199661, 6.29261335708839240986736404399, 6.39717818377493347523565938673, 7.16277862972928710155421440227, 7.23037692302101024142168718583, 7.83804568267963926704994118011