L(s) = 1 | + 2-s + 4-s + 2·5-s + 8-s + 5·9-s + 2·10-s + 5·11-s + 4·13-s + 16-s − 5·17-s + 5·18-s + 2·20-s + 5·22-s − 25-s + 4·26-s + 32-s − 5·34-s + 5·36-s − 16·37-s + 2·40-s + 5·44-s + 10·45-s + 5·49-s − 50-s + 4·52-s + 10·55-s + 10·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 5/3·9-s + 0.632·10-s + 1.50·11-s + 1.10·13-s + 1/4·16-s − 1.21·17-s + 1.17·18-s + 0.447·20-s + 1.06·22-s − 1/5·25-s + 0.784·26-s + 0.176·32-s − 0.857·34-s + 5/6·36-s − 2.63·37-s + 0.316·40-s + 0.753·44-s + 1.49·45-s + 5/7·49-s − 0.141·50-s + 0.554·52-s + 1.34·55-s + 1.30·59-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 540800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.927354287 |
L(21) |
≈ |
4.927354287 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C2 | 1−2T+pT2 |
| 13 | C2 | 1−4T+pT2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 7 | C22 | 1−5T2+p2T4 |
| 11 | C2×C2 | (1−5T+pT2)(1+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+7T+pT2) |
| 19 | C2 | (1−T+pT2)(1+T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C22 | 1+3T2+p2T4 |
| 31 | C22 | 1+23T2+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C22 | 1+75T2+p2T4 |
| 53 | C22 | 1+35T2+p2T4 |
| 59 | C2×C2 | (1−9T+pT2)(1−T+pT2) |
| 61 | C22 | 1−97T2+p2T4 |
| 67 | C2×C2 | (1+7T+pT2)(1+12T+pT2) |
| 71 | C22 | 1+38T2+p2T4 |
| 73 | C22 | 1+105T2+p2T4 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C2×C2 | (1−T+pT2)(1+4T+pT2) |
| 89 | C22 | 1−127T2+p2T4 |
| 97 | C22 | 1−50T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.693106897828908108247753364178, −7.952030872113872173367866691847, −7.24400594316398621315503187668, −7.01866428971125593812595099427, −6.58741997017797074790016737973, −6.22964068496149410178266735509, −5.78742587874235716738152627165, −5.16293979433082427180753488762, −4.60177403178348512577473878035, −4.10660632241969598906900634621, −3.79277034805909303170184144047, −3.22426006217808700760784232060, −2.14045533678656230614910911624, −1.74171000561321275859235095117, −1.20068436925435355317228040963,
1.20068436925435355317228040963, 1.74171000561321275859235095117, 2.14045533678656230614910911624, 3.22426006217808700760784232060, 3.79277034805909303170184144047, 4.10660632241969598906900634621, 4.60177403178348512577473878035, 5.16293979433082427180753488762, 5.78742587874235716738152627165, 6.22964068496149410178266735509, 6.58741997017797074790016737973, 7.01866428971125593812595099427, 7.24400594316398621315503187668, 7.952030872113872173367866691847, 8.693106897828908108247753364178