L(s) = 1 | + 2-s + 4-s + 2·5-s + 8-s − 5·9-s + 2·10-s − 5·11-s + 4·13-s + 16-s − 5·17-s − 5·18-s − 5·19-s + 2·20-s − 5·22-s + 10·23-s − 25-s + 4·26-s + 32-s − 5·34-s − 5·36-s + 9·37-s − 5·38-s + 2·40-s − 5·44-s − 10·45-s + 10·46-s + 10·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s − 5/3·9-s + 0.632·10-s − 1.50·11-s + 1.10·13-s + 1/4·16-s − 1.21·17-s − 1.17·18-s − 1.14·19-s + 0.447·20-s − 1.06·22-s + 2.08·23-s − 1/5·25-s + 0.784·26-s + 0.176·32-s − 0.857·34-s − 5/6·36-s + 1.47·37-s − 0.811·38-s + 0.316·40-s − 0.753·44-s − 1.49·45-s + 1.47·46-s + 10/7·49-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 540800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.690691788 |
L(21) |
≈ |
2.690691788 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C2 | 1−2T+pT2 |
| 13 | C2 | 1−4T+pT2 |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2×C2 | (1+pT2)(1+5T+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+7T+pT2) |
| 19 | C2×C2 | (1−T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−6T+pT2)(1−4T+pT2) |
| 29 | C22 | 1+8T2+p2T4 |
| 31 | C22 | 1−37T2+p2T4 |
| 37 | C2×C2 | (1−7T+pT2)(1−2T+pT2) |
| 41 | C22 | 1−7T2+p2T4 |
| 43 | C22 | 1+45T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 59 | C2×C2 | (1−9T+pT2)(1+4T+pT2) |
| 61 | C22 | 1−32T2+p2T4 |
| 67 | C2×C2 | (1−8T+pT2)(1+2T+pT2) |
| 71 | C22 | 1+83T2+p2T4 |
| 73 | C22 | 1−10T2+p2T4 |
| 79 | C2×C2 | (1−15T+pT2)(1−5T+pT2) |
| 83 | C2×C2 | (1−16T+pT2)(1−6T+pT2) |
| 89 | C22 | 1−157T2+p2T4 |
| 97 | C22 | 1+170T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.492336978829953026520466228567, −8.035586408751654110469652061173, −7.64791646569346460586478633013, −6.87627969783762347910928055543, −6.46796304996739428931435231301, −6.10610369765021072568123110118, −5.71551432890070618711992134228, −5.11604660689576680420305942249, −5.00495782937041374641078164791, −4.16879638878826673791512279611, −3.57173253019391291569431744188, −2.84690576720299293677237153014, −2.47526744211796281546010497613, −2.07464116870629392684308581672, −0.73033646217119766230883916812,
0.73033646217119766230883916812, 2.07464116870629392684308581672, 2.47526744211796281546010497613, 2.84690576720299293677237153014, 3.57173253019391291569431744188, 4.16879638878826673791512279611, 5.00495782937041374641078164791, 5.11604660689576680420305942249, 5.71551432890070618711992134228, 6.10610369765021072568123110118, 6.46796304996739428931435231301, 6.87627969783762347910928055543, 7.64791646569346460586478633013, 8.035586408751654110469652061173, 8.492336978829953026520466228567