Properties

Label 4-540800-1.1-c1e2-0-17
Degree $4$
Conductor $540800$
Sign $1$
Analytic cond. $34.4818$
Root an. cond. $2.42324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s − 5·9-s + 2·10-s − 5·11-s + 4·13-s + 16-s − 5·17-s − 5·18-s − 5·19-s + 2·20-s − 5·22-s + 10·23-s − 25-s + 4·26-s + 32-s − 5·34-s − 5·36-s + 9·37-s − 5·38-s + 2·40-s − 5·44-s − 10·45-s + 10·46-s + 10·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s − 5/3·9-s + 0.632·10-s − 1.50·11-s + 1.10·13-s + 1/4·16-s − 1.21·17-s − 1.17·18-s − 1.14·19-s + 0.447·20-s − 1.06·22-s + 2.08·23-s − 1/5·25-s + 0.784·26-s + 0.176·32-s − 0.857·34-s − 5/6·36-s + 1.47·37-s − 0.811·38-s + 0.316·40-s − 0.753·44-s − 1.49·45-s + 1.47·46-s + 10/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540800\)    =    \(2^{7} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(34.4818\)
Root analytic conductor: \(2.42324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 540800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.690691788\)
\(L(\frac12)\) \(\approx\) \(2.690691788\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 45 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 83 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 157 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 170 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.492336978829953026520466228567, −8.035586408751654110469652061173, −7.64791646569346460586478633013, −6.87627969783762347910928055543, −6.46796304996739428931435231301, −6.10610369765021072568123110118, −5.71551432890070618711992134228, −5.11604660689576680420305942249, −5.00495782937041374641078164791, −4.16879638878826673791512279611, −3.57173253019391291569431744188, −2.84690576720299293677237153014, −2.47526744211796281546010497613, −2.07464116870629392684308581672, −0.73033646217119766230883916812, 0.73033646217119766230883916812, 2.07464116870629392684308581672, 2.47526744211796281546010497613, 2.84690576720299293677237153014, 3.57173253019391291569431744188, 4.16879638878826673791512279611, 5.00495782937041374641078164791, 5.11604660689576680420305942249, 5.71551432890070618711992134228, 6.10610369765021072568123110118, 6.46796304996739428931435231301, 6.87627969783762347910928055543, 7.64791646569346460586478633013, 8.035586408751654110469652061173, 8.492336978829953026520466228567

Graph of the $Z$-function along the critical line