L(s) = 1 | + 2·5-s − 2·7-s + 14·17-s + 2·25-s − 4·35-s + 4·37-s − 10·41-s + 12·43-s + 4·47-s − 3·49-s − 20·67-s + 4·79-s + 4·83-s + 28·85-s − 10·89-s + 2·101-s + 12·109-s − 28·119-s + 10·121-s + 10·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s + 3.39·17-s + 2/5·25-s − 0.676·35-s + 0.657·37-s − 1.56·41-s + 1.82·43-s + 0.583·47-s − 3/7·49-s − 2.44·67-s + 0.450·79-s + 0.439·83-s + 3.03·85-s − 1.05·89-s + 0.199·101-s + 1.14·109-s − 2.56·119-s + 0.909·121-s + 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(254016s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
16.1962 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 254016, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.138728369 |
L(21) |
≈ |
2.138728369 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C2 | 1+2T+pT2 |
good | 5 | C2 | (1−4T+pT2)(1+2T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2×C2 | (1−8T+pT2)(1−6T+pT2) |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C22 | 1+18T2+p2T4 |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2×C2 | (1+4T+pT2)(1+6T+pT2) |
| 43 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
| 47 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 53 | C22 | 1+10T2+p2T4 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2×C2 | (1+8T+pT2)(1+12T+pT2) |
| 71 | C22 | 1+38T2+p2T4 |
| 73 | C22 | 1+50T2+p2T4 |
| 79 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 83 | C2×C2 | (1−16T+pT2)(1+12T+pT2) |
| 89 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 97 | C22 | 1+114T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.159134956812869679568273723662, −8.463305659030048724007518206089, −7.920265203540263934984211441912, −7.51943033712456739689546521679, −7.14936699479032740754868333143, −6.36722283838272124419966171712, −6.00971961788740877356019616363, −5.59074900788876333624744729444, −5.24308953152480817322793849162, −4.47425799401230125786402841817, −3.69705392804969212916691785128, −3.17530297564066487490438891901, −2.75960732049153766581847437261, −1.71508071193189601758216486522, −0.959093063501284743139378785566,
0.959093063501284743139378785566, 1.71508071193189601758216486522, 2.75960732049153766581847437261, 3.17530297564066487490438891901, 3.69705392804969212916691785128, 4.47425799401230125786402841817, 5.24308953152480817322793849162, 5.59074900788876333624744729444, 6.00971961788740877356019616363, 6.36722283838272124419966171712, 7.14936699479032740754868333143, 7.51943033712456739689546521679, 7.920265203540263934984211441912, 8.463305659030048724007518206089, 9.159134956812869679568273723662