Properties

Label 4-504e2-1.1-c1e2-0-23
Degree $4$
Conductor $254016$
Sign $1$
Analytic cond. $16.1962$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s + 14·17-s + 2·25-s − 4·35-s + 4·37-s − 10·41-s + 12·43-s + 4·47-s − 3·49-s − 20·67-s + 4·79-s + 4·83-s + 28·85-s − 10·89-s + 2·101-s + 12·109-s − 28·119-s + 10·121-s + 10·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s + 3.39·17-s + 2/5·25-s − 0.676·35-s + 0.657·37-s − 1.56·41-s + 1.82·43-s + 0.583·47-s − 3/7·49-s − 2.44·67-s + 0.450·79-s + 0.439·83-s + 3.03·85-s − 1.05·89-s + 0.199·101-s + 1.14·109-s − 2.56·119-s + 0.909·121-s + 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(16.1962\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 254016,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.138728369\)
\(L(\frac12)\) \(\approx\) \(2.138728369\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.159134956812869679568273723662, −8.463305659030048724007518206089, −7.920265203540263934984211441912, −7.51943033712456739689546521679, −7.14936699479032740754868333143, −6.36722283838272124419966171712, −6.00971961788740877356019616363, −5.59074900788876333624744729444, −5.24308953152480817322793849162, −4.47425799401230125786402841817, −3.69705392804969212916691785128, −3.17530297564066487490438891901, −2.75960732049153766581847437261, −1.71508071193189601758216486522, −0.959093063501284743139378785566, 0.959093063501284743139378785566, 1.71508071193189601758216486522, 2.75960732049153766581847437261, 3.17530297564066487490438891901, 3.69705392804969212916691785128, 4.47425799401230125786402841817, 5.24308953152480817322793849162, 5.59074900788876333624744729444, 6.00971961788740877356019616363, 6.36722283838272124419966171712, 7.14936699479032740754868333143, 7.51943033712456739689546521679, 7.920265203540263934984211441912, 8.463305659030048724007518206089, 9.159134956812869679568273723662

Graph of the $Z$-function along the critical line