L(s) = 1 | − 4·5-s + 6·25-s − 4·29-s − 16·43-s − 16·47-s + 2·49-s − 4·53-s − 16·67-s − 4·73-s − 4·97-s + 12·101-s + 10·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 6/5·25-s − 0.742·29-s − 2.43·43-s − 2.33·47-s + 2/7·49-s − 0.549·53-s − 1.95·67-s − 0.468·73-s − 0.406·97-s + 1.19·101-s + 0.909·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(41472s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(41472s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
41472
= 29⋅34
|
Sign: |
−1
|
Analytic conductor: |
2.64429 |
Root analytic conductor: |
1.27519 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 41472, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C22 | 1−46T2+p2T4 |
| 43 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 47 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 53 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 79 | C22 | 1−114T2+p2T4 |
| 83 | C22 | 1+6T2+p2T4 |
| 89 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04046016536150391071226454197, −9.478769385172889937032838588050, −8.822269054713076576399042446863, −8.277923334369285600815885459629, −7.965501018749938574846737817160, −7.42983512048804019983419743280, −6.90753797982818291117957608583, −6.33118006148456070158803503814, −5.52630893917906434361953259655, −4.75595304641916474324629799425, −4.33747103184689078316541533761, −3.47249024434556441041760301270, −3.17776636312574109281846582860, −1.74782644869831230888825208996, 0,
1.74782644869831230888825208996, 3.17776636312574109281846582860, 3.47249024434556441041760301270, 4.33747103184689078316541533761, 4.75595304641916474324629799425, 5.52630893917906434361953259655, 6.33118006148456070158803503814, 6.90753797982818291117957608583, 7.42983512048804019983419743280, 7.965501018749938574846737817160, 8.277923334369285600815885459629, 8.822269054713076576399042446863, 9.478769385172889937032838588050, 10.04046016536150391071226454197