L(s) = 1 | + 2-s + 4-s − 2·5-s − 3·7-s + 8-s − 5·9-s − 2·10-s − 11-s − 3·13-s − 3·14-s + 16-s − 5·18-s − 2·20-s − 22-s − 2·25-s − 3·26-s − 3·28-s + 31-s + 32-s + 6·35-s − 5·36-s − 2·40-s − 2·43-s − 44-s + 10·45-s − 6·47-s + 2·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.894·5-s − 1.13·7-s + 0.353·8-s − 5/3·9-s − 0.632·10-s − 0.301·11-s − 0.832·13-s − 0.801·14-s + 1/4·16-s − 1.17·18-s − 0.447·20-s − 0.213·22-s − 2/5·25-s − 0.588·26-s − 0.566·28-s + 0.179·31-s + 0.176·32-s + 1.01·35-s − 5/6·36-s − 0.316·40-s − 0.304·43-s − 0.150·44-s + 1.49·45-s − 0.875·47-s + 2/7·49-s + ⋯ |
Λ(s)=(=(31360s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(31360s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
31360
= 27⋅5⋅72
|
Sign: |
−1
|
Analytic conductor: |
1.99954 |
Root analytic conductor: |
1.18913 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 31360, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C1×C2 | (1+T)(1+T+pT2) |
| 7 | C2 | 1+3T+pT2 |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2×C2 | (1−2T+pT2)(1+3T+pT2) |
| 13 | C2×C2 | (1−T+pT2)(1+4T+pT2) |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | C22 | 1−12T2+p2T4 |
| 23 | C22 | 1−25T2+p2T4 |
| 29 | C22 | 1+3T2+p2T4 |
| 31 | C2×C2 | (1−8T+pT2)(1+7T+pT2) |
| 37 | C22 | 1+50T2+p2T4 |
| 41 | C22 | 1+43T2+p2T4 |
| 43 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 47 | C2×C2 | (1−2T+pT2)(1+8T+pT2) |
| 53 | C22 | 1+60T2+p2T4 |
| 59 | C22 | 1−52T2+p2T4 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2×C2 | (1−3T+pT2)(1+7T+pT2) |
| 71 | C22 | 1+8T2+p2T4 |
| 73 | C22 | 1−10T2+p2T4 |
| 79 | C22 | 1−22T2+p2T4 |
| 83 | C22 | 1−25T2+p2T4 |
| 89 | C22 | 1+143T2+p2T4 |
| 97 | C22 | 1−120T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.30625158281814654646136601008, −9.662116873776763503704987997104, −9.290253827775280498435333499559, −8.389606765016871261693289332634, −8.163601736289340551621444198358, −7.49141551790521137416786289005, −6.81577031659550740336496387543, −6.38032383064270632520363812271, −5.60956005351140354594733538219, −5.25056001774719032595567424552, −4.35698877117903131179237458107, −3.60640018363373500720888002371, −3.04296613229166822081277949951, −2.40461908035731444788935104109, 0,
2.40461908035731444788935104109, 3.04296613229166822081277949951, 3.60640018363373500720888002371, 4.35698877117903131179237458107, 5.25056001774719032595567424552, 5.60956005351140354594733538219, 6.38032383064270632520363812271, 6.81577031659550740336496387543, 7.49141551790521137416786289005, 8.163601736289340551621444198358, 8.389606765016871261693289332634, 9.290253827775280498435333499559, 9.662116873776763503704987997104, 10.30625158281814654646136601008